Structure design and fabricating methods of three-dimensional (3D) artificial spherical compound eyes have been researched by many scholars. Micro-nano optical manufacturing is mostly used to process 3D artificial c...Structure design and fabricating methods of three-dimensional (3D) artificial spherical compound eyes have been researched by many scholars. Micro-nano optical manufacturing is mostly used to process 3D artificial compound eyes. However, spherical optical compound eyes are less at optical performance than the eyes of insects, and it is difficult to further improve the imaging quality of compound eyes by means of micro-nano optical manufacturing. In this research, nonhomogeneous aspheric compound eyes (ACEs) are designed and fabricated. The nonhomogeneous aspheric structure is applied to calibrate the spherical aberration. Micro milling with advantages in processing three-dimensional micro structures is adopted to manufacture ACEs. In order to obtain ACEs with high imaging quality, the tool paths are optimized by analyzing the influence factors consisting of interpolation allowable error, scallop height and tool path pattern. In the experiments, two kinds of ACEs are manufactured by micro-milling with different too path patterns and cutting parameter on the miniature precision five-axis milling machine tool. The experimental results indicate that the ACEs of high surface quality can be achieved by circularly milling small micro-lens individually with changeable cutting depth. A prototype of the aspheric compound eye (ACE) with surface roughness (Ra) below 0.12 p.m is obtained with good imaging performance. This research ameliorates the imaging quality of 3D artificial compound eyes, and the proposed method of micro-milling can improve surface processing quality of compound eyes.展开更多
Background: Breast cancer is the most common type of cancer among women. Diagnosed and treated timely, patients may have good prognostics. In Brazil, in 2012, the estimate of new cases was 52,680 and the number of reg...Background: Breast cancer is the most common type of cancer among women. Diagnosed and treated timely, patients may have good prognostics. In Brazil, in 2012, the estimate of new cases was 52,680 and the number of registered deaths in 2012 was 12,852. The Renin-Angiotensin System (RAS) is known for its role in arterial hypertension and in other cardiovascular diseases. Angiotensin-Converting Enzyme 2 (ACE2) is the key to Ang-(1-7) formation, and counterbalances the ACE1/AngII/AGTR1 axis actions. RAS components have complex interactions with different tissues and their actions are not restricted to the cardiovascular system. Recently, the RAS has been associated with different types of cancers and in particular with gynecological cancers. Objectives: Our aim is to investigate possible associations between allelic distribution of two genetic polymorphisms in the AGTR2 receptor with ACEs 1 and 2 plasma levels among women with breast cancer. Patients and Methods: Patients with breast cancer were genotyped for two polymorphisms of the AGTR2 (T1247G and A5235G). Genotyping assays (TaqMan) were performed with genomic DNA extracted from blood cells. ACEs plasma level measurements were conducted in women from the breast-cancer group (N = 53). ACEs were measured in the plasma of these patients using ELISA kits. Results: SNPs genotype distribution is correlated with ACEs plasma levels. ACEs plasma levels are also correlated with clinical variables and ACE2 high levels are associated with better prognostics. Conclusions: Changes in circulating levels of ECA1/AngII ECA2/ Ang-(1-7) determine the magnitude of the inflammatory response that an individual can trigger and the variation in ACE 1 and 2 plasma level measurements in the blood of breast cancer patients suggests an association with the process of mammary carcinogenesis. Thus, the RAS may be associated with the process of mammary carcinogenesis by both genotypic variations of RAS components and by circulating levels of ACEs.展开更多
基金Supported by National Natural Science Foundation of China(Grant No.50935003)National Numerical Control Major Projects of China(Grant No.2013ZX04001000215)
文摘Structure design and fabricating methods of three-dimensional (3D) artificial spherical compound eyes have been researched by many scholars. Micro-nano optical manufacturing is mostly used to process 3D artificial compound eyes. However, spherical optical compound eyes are less at optical performance than the eyes of insects, and it is difficult to further improve the imaging quality of compound eyes by means of micro-nano optical manufacturing. In this research, nonhomogeneous aspheric compound eyes (ACEs) are designed and fabricated. The nonhomogeneous aspheric structure is applied to calibrate the spherical aberration. Micro milling with advantages in processing three-dimensional micro structures is adopted to manufacture ACEs. In order to obtain ACEs with high imaging quality, the tool paths are optimized by analyzing the influence factors consisting of interpolation allowable error, scallop height and tool path pattern. In the experiments, two kinds of ACEs are manufactured by micro-milling with different too path patterns and cutting parameter on the miniature precision five-axis milling machine tool. The experimental results indicate that the ACEs of high surface quality can be achieved by circularly milling small micro-lens individually with changeable cutting depth. A prototype of the aspheric compound eye (ACE) with surface roughness (Ra) below 0.12 p.m is obtained with good imaging performance. This research ameliorates the imaging quality of 3D artificial compound eyes, and the proposed method of micro-milling can improve surface processing quality of compound eyes.
文摘Background: Breast cancer is the most common type of cancer among women. Diagnosed and treated timely, patients may have good prognostics. In Brazil, in 2012, the estimate of new cases was 52,680 and the number of registered deaths in 2012 was 12,852. The Renin-Angiotensin System (RAS) is known for its role in arterial hypertension and in other cardiovascular diseases. Angiotensin-Converting Enzyme 2 (ACE2) is the key to Ang-(1-7) formation, and counterbalances the ACE1/AngII/AGTR1 axis actions. RAS components have complex interactions with different tissues and their actions are not restricted to the cardiovascular system. Recently, the RAS has been associated with different types of cancers and in particular with gynecological cancers. Objectives: Our aim is to investigate possible associations between allelic distribution of two genetic polymorphisms in the AGTR2 receptor with ACEs 1 and 2 plasma levels among women with breast cancer. Patients and Methods: Patients with breast cancer were genotyped for two polymorphisms of the AGTR2 (T1247G and A5235G). Genotyping assays (TaqMan) were performed with genomic DNA extracted from blood cells. ACEs plasma level measurements were conducted in women from the breast-cancer group (N = 53). ACEs were measured in the plasma of these patients using ELISA kits. Results: SNPs genotype distribution is correlated with ACEs plasma levels. ACEs plasma levels are also correlated with clinical variables and ACE2 high levels are associated with better prognostics. Conclusions: Changes in circulating levels of ECA1/AngII ECA2/ Ang-(1-7) determine the magnitude of the inflammatory response that an individual can trigger and the variation in ACE 1 and 2 plasma level measurements in the blood of breast cancer patients suggests an association with the process of mammary carcinogenesis. Thus, the RAS may be associated with the process of mammary carcinogenesis by both genotypic variations of RAS components and by circulating levels of ACEs.