期刊文献+
共找到8,501篇文章
< 1 2 250 >
每页显示 20 50 100
自动文本摘要研究综述 被引量:53
1
作者 李金鹏 张闯 +2 位作者 陈小军 胡玥 廖鹏程 《计算机研究与发展》 EI CSCD 北大核心 2021年第1期1-21,共21页
近年来,互联网技术的蓬勃发展极大地便利了人类的日常生活,不可避免的是互联网中的信息呈井喷式爆发,如何从中快速有效地获取所需信息显得极为重要.自动文本摘要技术的出现可以有效缓解该问题,其作为自然语言处理和人工智能领域的重要... 近年来,互联网技术的蓬勃发展极大地便利了人类的日常生活,不可避免的是互联网中的信息呈井喷式爆发,如何从中快速有效地获取所需信息显得极为重要.自动文本摘要技术的出现可以有效缓解该问题,其作为自然语言处理和人工智能领域的重要研究内容之一,利用计算机自动地从长文本或文本集合中提炼出一段能准确反映源文中心内容的简洁连贯的短文.探讨自动文本摘要任务的内涵,回顾和分析了自动文本摘要技术的发展,针对目前主要的2种摘要产生形式(抽取式和生成式)的具体工作进行了详细介绍,包括特征评分、分类算法、线性规划、次模函数、图排序、序列标注、启发式算法、深度学习等算法.并对自动文本摘要常用的数据集以及评价指标进行了分析,最后对其面临的挑战和未来的研究趋势、应用等进行了预测. 展开更多
关键词 自动文本摘要 抽取式方法 生成式方法 深度学习 ROUGE指标
下载PDF
内隐学习研究40年 被引量:8
2
作者 朱磊 杨治良 《心理科学进展》 CSSCI CSCD 北大核心 2006年第6期804-809,共6页
内隐学习至今已有40年的研究历史。在这期间,内隐学习的研究对象、研究方法和本质特征都得到了深入和扩展。主要体现在:内隐学习的研究材料从同时性刺激走向序时性刺激;内隐学习的研究方法从主观阈限的测量逐渐扩展到客观阈限测量,又再... 内隐学习至今已有40年的研究历史。在这期间,内隐学习的研究对象、研究方法和本质特征都得到了深入和扩展。主要体现在:内隐学习的研究材料从同时性刺激走向序时性刺激;内隐学习的研究方法从主观阈限的测量逐渐扩展到客观阈限测量,又再回到主观阈限测量之上;内隐学习的本质特征从抽象到具体,再落脚于熟悉性。 展开更多
关键词 同时性刺激 序列性刺激 主观阁限 客观阈限 抽象性
下载PDF
基于编码器共享和门控网络的生成式文本摘要方法 被引量:7
3
作者 田珂珂 周瑞莹 +1 位作者 董浩业 印鉴 《北京大学学报(自然科学版)》 EI CAS CSCD 北大核心 2020年第1期61-67,共7页
结合基于自注意力机制的Transformer模型,提出一种基于编码器共享和门控网络的文本摘要方法。该方法将编码器作为解码器的一部分,使解码器的部分模块共享编码器的参数,同时使用门控网络筛选输入序列中的关键信息。相对已有方法,所提方... 结合基于自注意力机制的Transformer模型,提出一种基于编码器共享和门控网络的文本摘要方法。该方法将编码器作为解码器的一部分,使解码器的部分模块共享编码器的参数,同时使用门控网络筛选输入序列中的关键信息。相对已有方法,所提方法提升了文本摘要任务的训练和推理速度,同时提升了生成摘要的准确性和流畅性。在英文数据集Gigaword和DUC2004上的实验表明,所提方法在时间效率和生成摘要质量上,明显优于已有模型。 展开更多
关键词 生成式 文本摘要 自注意力机制 编码器共享 门控网络
下载PDF
基于事件指导的多文档生成式摘要方法 被引量:6
4
作者 王振超 孙锐 姬东鸿 《计算机应用研究》 CSCD 北大核心 2017年第2期343-346,356,共5页
建立在理解篇章语义基础之上的生成式摘要,在思想上相对于抽取式摘要更加合理,但在具体实现上却面临语义理解、自然语言生成等难题。提出了一种以事件作为基本语义单元的生成式摘要方法,通过对事件聚类反映篇章的主题分布,并利用事件指... 建立在理解篇章语义基础之上的生成式摘要,在思想上相对于抽取式摘要更加合理,但在具体实现上却面临语义理解、自然语言生成等难题。提出了一种以事件作为基本语义单元的生成式摘要方法,通过对事件聚类反映篇章的主题分布,并利用事件指导多语句压缩生成自然语句构建摘要。通过在DUC标准数据集上进行评测,最终的ROUGE得分媲美目前主流的生成式方法,从而说明事件能够很好地承载篇章的主干信息,同时有效地指导多语句压缩过程中冗余信息的去除和自然语言的生成。 展开更多
关键词 事件 生成式 组合语义 子主题 多语句压缩 多文档摘要
下载PDF
Segmented Summarization and Refinement:A Pipeline for Long-Document Analysis on Social Media
5
作者 Guanghua Wang Priyanshi Garg Weili Wu 《Journal of Social Computing》 EI 2024年第2期132-144,共13页
Social media’s explosive growth has resulted in a massive influx of electronic documents influencing various facets of daily life.However,the enormous and complex nature of this content makes extracting valuable insi... Social media’s explosive growth has resulted in a massive influx of electronic documents influencing various facets of daily life.However,the enormous and complex nature of this content makes extracting valuable insights challenging.Long document summarization emerges as a pivotal technique in this context,serving to distill extensive texts into concise and comprehensible summaries.This paper presents a novel three-stage pipeline for effective long document summarization.The proposed approach combines unsupervised and supervised learning techniques,efficiently handling large document sets while requiring minimal computational resources.Our methodology introduces a unique process for forming semantic chunks through spectral dynamic segmentation,effectively reducing redundancy and repetitiveness in the summarization process.Contrary to previous methods,our approach aligns each semantic chunk with the entire summary paragraph,allowing the abstractive summarization model to process documents without truncation and enabling the summarization model to deduce missing information from other chunks.To enhance the summary generation,we utilize a sophisticated rewrite model based on Bidirectional and Auto-Regressive Transformers(BART),rearranging and reformulating summary constructs to improve their fluidity and coherence.Empirical studies conducted on the long documents from the Webis-TLDR-17 dataset demonstrate that our approach significantly enhances the efficiency of abstractive summarization transformers.The contributions of this paper thus offer significant advancements in the field of long document summarization,providing a novel and effective methodology for summarizing extensive texts in the context of social media. 展开更多
关键词 long document summarization abstractive summarization text segmentation text alignment rewrite model spectral embedding
原文传递
Weakly Supervised Abstractive Summarization with Enhancing Factual Consistency for Chinese Complaint Reports
6
作者 Ren Tao Chen Shuang 《Computers, Materials & Continua》 SCIE EI 2023年第6期6201-6217,共17页
A large variety of complaint reports reflect subjective information expressed by citizens.A key challenge of text summarization for complaint reports is to ensure the factual consistency of generated summary.Therefore... A large variety of complaint reports reflect subjective information expressed by citizens.A key challenge of text summarization for complaint reports is to ensure the factual consistency of generated summary.Therefore,in this paper,a simple and weakly supervised framework considering factual consistency is proposed to generate a summary of city-based complaint reports without pre-labeled sentences/words.Furthermore,it considers the importance of entity in complaint reports to ensure factual consistency of summary.Experimental results on the customer review datasets(Yelp and Amazon)and complaint report dataset(complaint reports of Shenyang in China)show that the proposed framework outperforms state-of-the-art approaches in ROUGE scores and human evaluation.It unveils the effectiveness of our approach to helping in dealing with complaint reports. 展开更多
关键词 Automatic summarization abstractive summarization weakly supervised training entity recognition
下载PDF
Novel multi‐domain attention for abstractive summarisation
7
作者 Chunxia Qu Ling Lu +2 位作者 Aijuan Wang Wu Yang Yinong Chen 《CAAI Transactions on Intelligence Technology》 SCIE EI 2023年第3期796-806,共11页
The existing abstractive text summarisation models only consider the word sequence correlations between the source document and the reference summary,and the summary generated by models lacks the cover of the subject ... The existing abstractive text summarisation models only consider the word sequence correlations between the source document and the reference summary,and the summary generated by models lacks the cover of the subject of source document due to models'small perspective.In order to make up these disadvantages,a multi‐domain attention pointer(MDA‐Pointer)abstractive summarisation model is proposed in this work.First,the model uses bidirectional long short‐term memory to encode,respectively,the word and sentence sequence of source document for obtaining the semantic representations at word and sentence level.Furthermore,the multi‐domain attention mechanism between the semantic representations and the summary word is established,and the proposed model can generate summary words under the proposed attention mechanism based on the words and sen-tences.Then,the words are extracted from the vocabulary or the original word sequences through the pointer network to form the summary,and the coverage mechanism is introduced,respectively,into word and sentence level to reduce the redundancy of sum-mary content.Finally,experiment validation is conducted on CNN/Daily Mail dataset.ROUGE evaluation indexes of the model without and with the coverage mechanism are improved respectively,and the results verify the validation of model proposed by this paper. 展开更多
关键词 abstractive summarisation attention mechanism Bi‐LSTM coverage mechanism pointer network
下载PDF
Ext-ICAS:A Novel Self-Normalized Extractive Intra Cosine Attention Similarity Summarization
8
作者 P.Sharmila C.Deisy S.Parthasarathy 《Computer Systems Science & Engineering》 SCIE EI 2023年第4期377-393,共17页
With the continuous growth of online news articles,there arises the necessity for an efficient abstractive summarization technique for the problem of information overloading.Abstractive summarization is highly complex... With the continuous growth of online news articles,there arises the necessity for an efficient abstractive summarization technique for the problem of information overloading.Abstractive summarization is highly complex and requires a deeper understanding and proper reasoning to come up with its own summary outline.Abstractive summarization task is framed as seq2seq modeling.Existing seq2seq methods perform better on short sequences;however,for long sequences,the performance degrades due to high computation and hence a two-phase self-normalized deep neural document summarization model consisting of improvised extractive cosine normalization and seq2seq abstractive phases has been proposed in this paper.The novelty is to parallelize the sequence computation training by incorporating feed-forward,the self-normalized neural network in the Extractive phase using Intra Cosine Attention Similarity(Ext-ICAS)with sentence dependency position.Also,it does not require any normalization technique explicitly.Our proposed abstractive Bidirectional Long Short Term Memory(Bi-LSTM)encoder sequence model performs better than the Bidirectional Gated Recurrent Unit(Bi-GRU)encoder with minimum training loss and with fast convergence.The proposed model was evaluated on the Cable News Network(CNN)/Daily Mail dataset and an average rouge score of 0.435 was achieved also computational training in the extractive phase was reduced by 59%with an average number of similarity computations. 展开更多
关键词 abstractive summarization natural language processing sequence-tosequence learning(seq2seq) SELF-NORMALIZATION intra(self)attention
下载PDF
A Method of Integrating Length Constraints into Encoder-Decoder Transformer for Abstractive Text Summarization
9
作者 Ngoc-Khuong Nguyen Dac-Nhuong Le +1 位作者 Viet-Ha Nguyen Anh-Cuong Le 《Intelligent Automation & Soft Computing》 2023年第10期1-18,共18页
Text summarization aims to generate a concise version of the original text.The longer the summary text is,themore detailed it will be fromthe original text,and this depends on the intended use.Therefore,the problem of... Text summarization aims to generate a concise version of the original text.The longer the summary text is,themore detailed it will be fromthe original text,and this depends on the intended use.Therefore,the problem of generating summary texts with desired lengths is a vital task to put the research into practice.To solve this problem,in this paper,we propose a new method to integrate the desired length of the summarized text into the encoder-decoder model for the abstractive text summarization problem.This length parameter is integrated into the encoding phase at each self-attention step and the decoding process by preserving the remaining length for calculating headattention in the generation process and using it as length embeddings added to theword embeddings.We conducted experiments for the proposed model on the two data sets,Cable News Network(CNN)Daily and NEWSROOM,with different desired output lengths.The obtained results show the proposed model’s effectiveness compared with related studies. 展开更多
关键词 Length controllable abstractive text summarization length embedding
下载PDF
一种多语种生成式自动摘要方法的实现
10
作者 易志伟 赵亚慧 崔荣一 《延边大学学报(自然科学版)》 CAS 2019年第3期254-259,共6页
为实现多语种生成式自动摘要,基于序列到序列(Seq2Seq)模型提出了一种多语种生成式自动摘要方法.首先,按照传统的多语种自动摘要方法,将中、英、朝3个语种的语料分开训练,得到3个模型,并观察各模型在测试集上的表现;其次,按照本文提出... 为实现多语种生成式自动摘要,基于序列到序列(Seq2Seq)模型提出了一种多语种生成式自动摘要方法.首先,按照传统的多语种自动摘要方法,将中、英、朝3个语种的语料分开训练,得到3个模型,并观察各模型在测试集上的表现;其次,按照本文提出的多语种自动摘要法,将中、英、朝3种语言的语料放在一起共同训练出一个模型,然后运用该模型分别运行中文、英文、朝文语料的测试集,并观察模型的表现;最后,用同一个测试集测试模型改进前后的摘要生成效果.实验结果表明,本文方法生成多语种自动摘要的效果与传统方法相近,但因本文方法只用一个模型即可实现多语种自动摘要,因此更具有适用性. 展开更多
关键词 生成式 自动摘要 多语种 共同训练
下载PDF
融合与跨越——论吕品昌陶艺创作的现代性突围
11
作者 陆媛媛 李超 《艺术设计研究》 CSSCI 2022年第6期84-89,共6页
本文从吕品昌作品中“陶艺缺陷肌理”理论与写意特征、民间趣味相融合,陶艺介入公共环境艺术,以材料特质作为观念的表征,以及以现成品概念直达观念本身这些角度的创作实践,讨论其陶艺创作的现代性突围。一窥一位艺术家如何结合时代命题... 本文从吕品昌作品中“陶艺缺陷肌理”理论与写意特征、民间趣味相融合,陶艺介入公共环境艺术,以材料特质作为观念的表征,以及以现成品概念直达观念本身这些角度的创作实践,讨论其陶艺创作的现代性突围。一窥一位艺术家如何结合时代命题、历史文脉、传统文化、西方思潮融会贯通成就个体在创作中的探索与突破,并与中国现代陶艺发展的整体脉络和观念转向相印证。 展开更多
关键词 吕品昌 现代陶艺 缺陷肌理 写意 观念
下载PDF
Enhancing N-Gram Based Metrics with Semantics for Better Evaluation of Abstractive Text Summarization
12
作者 Jia-Wei He Wen-Jun Jiang +2 位作者 Guo-Bang Chen Yu-Quan Le Xiao-Fei Ding 《Journal of Computer Science & Technology》 SCIE EI CSCD 2022年第5期1118-1133,共16页
Text summarization is an important task in natural language processing and it has been applied in many applications.Recently,abstractive summarization has attracted many attentions.However,the traditional evaluation m... Text summarization is an important task in natural language processing and it has been applied in many applications.Recently,abstractive summarization has attracted many attentions.However,the traditional evaluation metrics that consider little semantic information,are unsuitable for evaluating the quality of deep learning based abstractive summarization models,since these models may generate new words that do not exist in the original text.Moreover,the out-of-vocabulary(OOV)problem that affects the evaluation results,has not been well solved yet.To address these issues,we propose a novel model called ENMS,to enhance existing N-gram based evaluation metrics with semantics.To be specific,we present two types of methods:N-gram based Semantic Matching(NSM for short),and N-gram based Semantic Similarity(NSS for short),to improve several widely-used evaluation metrics including ROUGE(Recall-Oriented Understudy for Gisting Evaluation),BLEU(Bilingual Evaluation Understudy),etc.NSM and NSS work in different ways.The former calculates the matching degree directly,while the latter mainly improves the similarity measurement.Moreover we propose an N-gram representation mechanism to explore the vector representation of N-grams(including skip-grams).It serves as the basis of our ENMS model,in which we exploit some simple but effective integration methods to solve the OOV problem efficiently.Experimental results over the TAC AESOP dataset show that the metrics improved by our methods are well correlated with human judgements and can be used to better evaluate abstractive summarization methods. 展开更多
关键词 summarization evaluation abstractive summarization hard matching semantic information
原文传递
不确定法律概念生成原因析微
13
作者 解少君 《武警学院学报》 2008年第5期37-41,共5页
不确定的法律概念是法律中无法避免的客观事实,其生成不仅是由于语言本身的模糊性、多义性和不可定义性,也是语言本身的高度抽象性所致,更因为是立法者对于所要规范的事项无法完全预见,为了涵盖更广的规范对象,为了适应社会的变迁,而特... 不确定的法律概念是法律中无法避免的客观事实,其生成不仅是由于语言本身的模糊性、多义性和不可定义性,也是语言本身的高度抽象性所致,更因为是立法者对于所要规范的事项无法完全预见,为了涵盖更广的规范对象,为了适应社会的变迁,而特意使用的相对模糊的概念形式。 展开更多
关键词 不确定 法律概念 语言 抽象性 人为选择
下载PDF
An Intelligent Tree Extractive Text Summarization Deep Learning
14
作者 Abeer Abdulaziz AlArfaj Hanan Ahmed Hosni Mahmoud 《Computers, Materials & Continua》 SCIE EI 2022年第11期4231-4244,共14页
In recent research,deep learning algorithms have presented effective representation learning models for natural languages.The deep learningbased models create better data representation than classical models.They are ... In recent research,deep learning algorithms have presented effective representation learning models for natural languages.The deep learningbased models create better data representation than classical models.They are capable of automated extraction of distributed representation of texts.In this research,we introduce a new tree Extractive text summarization that is characterized by fitting the text structure representation in knowledge base training module,and also addresses memory issues that were not addresses before.The proposed model employs a tree structured mechanism to generate the phrase and text embedding.The proposed architecture mimics the tree configuration of the text-texts and provide better feature representation.It also incorporates an attention mechanism that offers an additional information source to conduct better summary extraction.The novel model addresses text summarization as a classification process,where the model calculates the probabilities of phrase and text-summary association.The model classification is divided into multiple features recognition such as information entropy,significance,redundancy and position.The model was assessed on two datasets,on the Multi-Doc Composition Query(MCQ)and Dual Attention Composition dataset(DAC)dataset.The experimental results prove that our proposed model has better summarization precision vs.other models by a considerable margin. 展开更多
关键词 Neural network architecture text structure abstractive summarization
下载PDF
RETRACTED:Recent Approaches for Text Summarization Using Machine Learning&LSTM0
15
作者 Neeraj Kumar Sirohi Mamta Bansal S.N.Rajan 《Journal on Big Data》 2021年第1期35-47,共13页
Nowadays,data is very rapidly increasing in every domain such as social media,news,education,banking,etc.Most of the data and information is in the form of text.Most of the text contains little invaluable information ... Nowadays,data is very rapidly increasing in every domain such as social media,news,education,banking,etc.Most of the data and information is in the form of text.Most of the text contains little invaluable information and knowledge with lots of unwanted contents.To fetch this valuable information out of the huge text document,we need summarizer which is capable to extract data automatically and at the same time capable to summarize the document,particularly textual text in novel document,without losing its any vital information.The summarization could be in the form of extractive and abstractive summarization.The extractive summarization includes picking sentences of high rank from the text constructed by using sentence and word features and then putting them together to produced summary.An abstractive summarization is based on understanding the key ideas in the given text and then expressing those ideas in pure natural language.The abstractive summarization is the latest problem area for NLP(natural language processing),ML(Machine Learning)and NN(Neural Network)In this paper,the foremost techniques for automatic text summarization processes are defined.The different existing methods have been reviewed.Their effectiveness and limitations are described.Further the novel approach based on Neural Network and LSTM has been discussed.In Machine Learning approach the architecture of the underlying concept is called Encoder-Decoder. 展开更多
关键词 Text summarization extractive summary abstractive summary NLP LSTM
下载PDF
Exploiting comments information to improve legal public opinion news abstractive summarization
16
作者 Yuxin HUANG Zhengtao YU +2 位作者 Yan XIANG Zhiqiang YU Junjun GUO 《Frontiers of Computer Science》 SCIE EI CSCD 2022年第6期31-40,共10页
Automatically generating a brief summary for legal-related public opinion news(LPO-news,which contains legal words or phrases)plays an important role in rapid and effective public opinion disposal.For LPO-news,the cri... Automatically generating a brief summary for legal-related public opinion news(LPO-news,which contains legal words or phrases)plays an important role in rapid and effective public opinion disposal.For LPO-news,the critical case elements which are significant parts of the summary may be mentioned several times in the reader comments.Consequently,we investigate the task of comment-aware abstractive text summarization for LPO-news,which can generate salient summary by learning pivotal case elements from the reader comments.In this paper,we present a hierarchical comment-aware encoder(HCAE),which contains four components:1)a traditional sequenceto-sequence framework as our baseline;2)a selective denoising module to filter the noisy of comments and distinguish the case elements;3)a merge module by coupling the source article and comments to yield comment-aware context representation;4)a recoding module to capture the interaction among the source article words conditioned on the comments.Extensive experiments are conducted on a large dataset of legal public opinion news collected from micro-blog,and results show that the proposed model outperforms several existing state-of-the-art baseline models under the ROUGE metrics. 展开更多
关键词 legal public opinion news abstractive summarization COMMENT comment-aware context case elements bidirectional attention
原文传递
行政法学的体系化建构与均衡 被引量:47
17
作者 赵宏 《法学家》 CSSCI 北大核心 2013年第5期34-54,176,共21页
体系化一直以来都被视为大陆法系法学科建构的标志。体系化不仅提升了法学科的稳定性、理性和拓展性,同样也能使法学科对生动的社会现实保持开放。法学科的体系化与实证主义法学观密切相关,是法学家希望藉由体系建构来促成法系统以及法... 体系化一直以来都被视为大陆法系法学科建构的标志。体系化不仅提升了法学科的稳定性、理性和拓展性,同样也能使法学科对生动的社会现实保持开放。法学科的体系化与实证主义法学观密切相关,是法学家希望藉由体系建构来促成法系统以及法学科系统独立自足的持续努力。本文选取德国行政法作为法学科体系建构的考察样本,通过对其体系化建构过程的探讨,尤其是对基本原则、抽象概念与法释义学这三项要素在体系建构过程中作用的剖析,来揭示体系化对于法学科的重要价值;同时也尝试归纳成功的法学科体系建构的核心要素和基本过程。中国行政法学的整体发展,有赖于对既有制度与学理的体系化建构。 展开更多
关键词 体系化 基本原则 抽象概念 法释义学
原文传递
关键词提取研究综述 被引量:37
18
作者 胡少虎 张颖怡 章成志 《数据分析与知识发现》 CSSCI CSCD 北大核心 2021年第3期45-59,共15页
【目的】对关键词提取研究的主要方法、相关特征以及评价方法进行总结梳理,为后续的关键词提取研究提供借鉴。【文献范围】以"Keyword Extraction"、"Keyword Generation"、"Keyphrase Extraction"、&quo... 【目的】对关键词提取研究的主要方法、相关特征以及评价方法进行总结梳理,为后续的关键词提取研究提供借鉴。【文献范围】以"Keyword Extraction"、"Keyword Generation"、"Keyphrase Extraction"、"Keyphrase Generation"、"关键词抽取"、"关键词生成"等检索式在Web of Science、DBLP、Engineering Index、Google Scholar、CNKI和万方等数据库进行检索,结合个人积累与文献溯源得到代表性文献89篇。【方法】梳理关键词提取的发展脉络,从研究方法、相关特征与评价方法三个主要方面对关键词提取的相关研究进行深入分析与总结。【结果】关键词提取方法随着机器学习技术的发展,逐步从特征驱动的模型转向数据驱动的模型,并面临数据标注、评价规范等问题。【局限】更为关注关键词提取研究中主流的方法。【结论】本文通过对关键词提取方法,尤其是关键词生成方法进行总结,阐明了关键词提取方法的研究重心从特征转向数据的趋势与原因,并指出现有关键词提取评价体系所存在的缺陷。 展开更多
关键词 提取 关键词抽取 关键词生成
原文传递
主题关键词信息融合的中文生成式自动摘要研究 被引量:29
19
作者 侯丽微 胡珀 曹雯琳 《自动化学报》 EI CSCD 北大核心 2019年第3期530-539,共10页
随着大数据和人工智能技术的迅猛发展,传统自动文摘研究正朝着从抽取式摘要到生成式摘要的方向演化,从中达到生成更高质量的自然流畅的文摘的目的.近年来,深度学习技术逐渐被应用于生成式摘要研究中,其中基于注意力机制的序列到序列模... 随着大数据和人工智能技术的迅猛发展,传统自动文摘研究正朝着从抽取式摘要到生成式摘要的方向演化,从中达到生成更高质量的自然流畅的文摘的目的.近年来,深度学习技术逐渐被应用于生成式摘要研究中,其中基于注意力机制的序列到序列模型已成为应用最广泛的模型之一,尤其在句子级摘要生成任务(如新闻标题生成、句子压缩等)中取得了显著的效果.然而,现有基于神经网络的生成式摘要模型绝大多数将注意力均匀分配到文本的所有内容中,而对其中蕴含的重要主题信息并没有细致区分.鉴于此,本文提出了一种新的融入主题关键词信息的多注意力序列到序列模型,通过联合注意力机制将文本中主题下重要的一些关键词语的信息与文本语义信息综合起来实现对摘要的引导生成.在NLPCC 2017的中文单文档摘要评测数据集上的实验结果验证了所提方法的有效性和先进性. 展开更多
关键词 联合注意力机制 序列到序列模型 生成式摘要 主题关键词
下载PDF
基于深度学习的生成式文本摘要技术综述 被引量:20
20
作者 朱永清 赵鹏 +3 位作者 赵菲菲 慕晓冬 白坤 尤轩昂 《计算机工程》 CAS CSCD 北大核心 2021年第11期11-21,28,共12页
在互联网数据急剧扩张和深度学习技术高速发展的背景下,自动文本摘要任务作为自然语言处理领域的主要研究方向之一,其相关技术及应用被广泛研究。基于摘要任务深化研究需求,以研究过程中存在的关键问题为导向,介绍现有基于深度学习的生... 在互联网数据急剧扩张和深度学习技术高速发展的背景下,自动文本摘要任务作为自然语言处理领域的主要研究方向之一,其相关技术及应用被广泛研究。基于摘要任务深化研究需求,以研究过程中存在的关键问题为导向,介绍现有基于深度学习的生成式文本摘要模型,简述定义及来源、数据预处理及基本框架、常用数据集及评价标准等,指出发展优势和关键问题,并针对关键问题阐述对应的可行性解决方案。对比常用的深度预训练模型和创新方法融合模型,分析各模型的创新性和局限性,提出对部分局限性问题的解决思路。进一步地,对该技术领域的未来发展方向进行展望总结。 展开更多
关键词 深度学习 生成式文本摘要 未登录词 生成重复 长程依赖 评价标准
下载PDF
上一页 1 2 250 下一页 到第
使用帮助 返回顶部