The distribution and genetic mechanisms of abnormal pressures in the Bohai Bay Basin were systematically analyzed. Abnormal pressures are widely developed in the Bohai Bay Basin, primarily in the Paleogene E2s4, E2s3,...The distribution and genetic mechanisms of abnormal pressures in the Bohai Bay Basin were systematically analyzed. Abnormal pressures are widely developed in the Bohai Bay Basin, primarily in the Paleogene E2s4, E2s3, Es1, and Ed formations. From the onshore area of the Bohai Bay Basin to the center of the Bozhong area, the top depth of the overpressured zone in each depression increases gradually, the overpressured strata in each depression gradually move to younger formations, and the pressure structure successively alters from single-bottom- overpressure to double-bottom-overpressure and finally to double-top-overpressure. The distribution of overpressured area is consistent with the sedimentary migration controlled by the tectonic evolution of the Bohai Bay Basin, which is closely related to the hydrocarbon-generation capability of active source rocks. The overpressured strata are consistent with the source-rock intervals in each depression; the top of the overpressured zone is synchronous with the hydrocarbon generation threshold in each depression; the hydrocarbon generation capability is positively correlated with the overpressure magnitude in each formation. Undercompaction was the main mechanism of overpressure for depressions with fluid pressure coefficients less than 1.2, whereas hydrocarbon generation was the main mechanism for depressions with fluid pressure coefficients greater than 1.5.展开更多
Hydrofracturing has been found in a numbr of sedimentary basins throughout the world, which pay an important role in the migration of hydrocarbon and compaction of deposits in overpressured impermeable muddy rock. The...Hydrofracturing has been found in a numbr of sedimentary basins throughout the world, which pay an important role in the migration of hydrocarbon and compaction of deposits in overpressured impermeable muddy rock. The forming processes of hydrofracture in the basin evolution has been simulated and the associated episodic compaction of deposits has been evaluated. The modelling results indicate that episodic compacting process in impermeable rocks induced by hydrofracturing is an important way of sediment compaction.展开更多
基金the National Natural Science Foundation(Grant No.41502129)the Important National Science & Technology Specific Projects(grant No.2016ZX05006-003)the Fundamental Research Funds for the Central Universities(grant No.14CX05015A)
文摘The distribution and genetic mechanisms of abnormal pressures in the Bohai Bay Basin were systematically analyzed. Abnormal pressures are widely developed in the Bohai Bay Basin, primarily in the Paleogene E2s4, E2s3, Es1, and Ed formations. From the onshore area of the Bohai Bay Basin to the center of the Bozhong area, the top depth of the overpressured zone in each depression increases gradually, the overpressured strata in each depression gradually move to younger formations, and the pressure structure successively alters from single-bottom- overpressure to double-bottom-overpressure and finally to double-top-overpressure. The distribution of overpressured area is consistent with the sedimentary migration controlled by the tectonic evolution of the Bohai Bay Basin, which is closely related to the hydrocarbon-generation capability of active source rocks. The overpressured strata are consistent with the source-rock intervals in each depression; the top of the overpressured zone is synchronous with the hydrocarbon generation threshold in each depression; the hydrocarbon generation capability is positively correlated with the overpressure magnitude in each formation. Undercompaction was the main mechanism of overpressure for depressions with fluid pressure coefficients less than 1.2, whereas hydrocarbon generation was the main mechanism for depressions with fluid pressure coefficients greater than 1.5.
文摘Hydrofracturing has been found in a numbr of sedimentary basins throughout the world, which pay an important role in the migration of hydrocarbon and compaction of deposits in overpressured impermeable muddy rock. The forming processes of hydrofracture in the basin evolution has been simulated and the associated episodic compaction of deposits has been evaluated. The modelling results indicate that episodic compacting process in impermeable rocks induced by hydrofracturing is an important way of sediment compaction.