数项级数是级数理论的基础部分,在正项级数中有一个所谓的Abel-Dini定理,在本文中,我们将对Abel-Dini定理给出另一种证明方法,并且证明在任意项级数中,相应的Abel-Dini定理是不成立的. 设u_1,u_2,…,u_n,…,为一实数列,它构成一个无穷...数项级数是级数理论的基础部分,在正项级数中有一个所谓的Abel-Dini定理,在本文中,我们将对Abel-Dini定理给出另一种证明方法,并且证明在任意项级数中,相应的Abel-Dini定理是不成立的. 设u_1,u_2,…,u_n,…,为一实数列,它构成一个无穷级数sum fron n=1 to∞(u_n),记它的部分和为S_n=sum from k=1 to ∞(u_k),在下面的讨论中为方便我们均假定u_n≠0,S_n≠0,展开更多
文摘数项级数是级数理论的基础部分,在正项级数中有一个所谓的Abel-Dini定理,在本文中,我们将对Abel-Dini定理给出另一种证明方法,并且证明在任意项级数中,相应的Abel-Dini定理是不成立的. 设u_1,u_2,…,u_n,…,为一实数列,它构成一个无穷级数sum fron n=1 to∞(u_n),记它的部分和为S_n=sum from k=1 to ∞(u_k),在下面的讨论中为方便我们均假定u_n≠0,S_n≠0,