After entering the twenty-first century,biochar has become a focal point of multidisciplinary research because of its special characteristics,broad application,and promising development prospects.Basic and applied res...After entering the twenty-first century,biochar has become a focal point of multidisciplinary research because of its special characteristics,broad application,and promising development prospects.Basic and applied research on the application of biochar in the areas of agriculture,environment,and energy have increased dramatically in the face of food security,environmental pollution,and energy shortage.Although there are some disputes about biochar research,many studies have demonstrated the importance of biochar research from the perspective of scientific advancement and practical application.This paper briefly recalls the history of biochar application;introduces research progress on the basic characteristics of biochar and its associated production technologies;summarizes the research status and existing problems of biochar application in the areas of agriculture,environment,and energy;and analyzes the potential problems and development trends of biochar research in the future.展开更多
Volatile organic compounds(VOCs)released from the waste treatment facilities have become a significant issue because they are not only causing odor nuisance but may also hazard to human health.Non-thermal plasma(NTP)t...Volatile organic compounds(VOCs)released from the waste treatment facilities have become a significant issue because they are not only causing odor nuisance but may also hazard to human health.Non-thermal plasma(NTP)technologies are newly developed methods and became a research trend in recent years regarding the removal of VOCs from the air stream.Due to its unique characteristics,such as rapid response at room temperature,bulk homogenized volume,high reaction efficiency,dielectric barrier discharge(DBD)plasma technology is considered one of the most promising techniques of NTP.This paper reviews recent progress of DBD plasma technology for abatement of VOCs.The principle of plasma generation in DBD and its configurations(electrode,discharge gap,dielectric barrier material,etc.)are discussed in details.Based on previously published literature,attention has been paid on the effect of DBD configuration on the removal of VOCs.Effect of various process parameters such as initial concentration,gas feeding rate,oxygen content and input power on VOCs removal are also considered.Moreover,the role of catalysis and inhibitors in VOCs removal by DBD system are presented.Finally,a modified configuration of the DBD reactor,i.e.double dielectric barrier discharge(DDBD)for the abatement of VOCs is discussed.It was suggested that the DDBD plasma reactor could be used for higher conversion efficiency as well as for avoiding solid residue deposition on the electrode.These depositions can interfere with the performance of the reactor.展开更多
Significant concerns have been raised over the presence of antibiotics including tetracyclines in aquatic environments.A series of FeMn binary oxide with different Fe:Mn molar ratios was synthesized by a simultaneous...Significant concerns have been raised over the presence of antibiotics including tetracyclines in aquatic environments.A series of FeMn binary oxide with different Fe:Mn molar ratios was synthesized by a simultaneous oxidation and coprecipitation process for TC removal.Results showed that Fe-Mn binary oxide had higher removal efficiency than that of hydrous iron oxide and hydrous manganese oxide,and that the oxide with a Fe:Mn molar ratio of 5:1 was the best in removal than other molar ratios.The tetracycline removal was highly pH dependent.The removal of tetracycline decreased with the increase of initial concentration,but the absolute removal quantity was more at high concentration.The presence of cations and anions such as Ca2+,Mg2+,CO32-and SO42-had no significant effect on the tetracycline removal in our experimental conditions,while SiO32-and PO43-had hindered the adsorption of tetracycline.The mechanism investigation found that tetracycline removal was mainly achieved by the replacement of surface hydroxyl groups by the tetracycline species and formation of surface complexes at the water/oxide interface.This primary study suggests that Fe-Mn binary oxide with a proper Fe:Mn molar ratio will be a very promising material for the removal of tetracycline from aqueous solutions.展开更多
Volatile organic compounds (VOCs) play important roles in the atmosphere via three main pathways: photochemical ozone formation, secondary organic aerosol production, and direct toxicity to humans. Fewstudies have ...Volatile organic compounds (VOCs) play important roles in the atmosphere via three main pathways: photochemical ozone formation, secondary organic aerosol production, and direct toxicity to humans. Fewstudies have integrated these effect, s to prioritize control measures for VOC.s sources. In this study,we developed a multi-effects evaluation methodology based on updated emission inventories and source profiles, by combining the ozone formation potential (OFP), secondary organic aerosol potential (SOAP), and VOC toxicity data. We derived species-specific emission inventories for 152 sources. The OFPs, SOAPs, and toxicity of each source were estimated, the contribution and sharing of source to each of these adverse effects were calculated. Weightings were given to the three adverse effects by expert scoring, and then the integrated effect was determined. Taking 2012 as the base year,solvent use and industrial process were found to be the most important anthropogenic sources, accounting for 24.2% and 23.1% of the integrated effect, respectively, followed by biomass burning, transportation, and fossil fuel combustion, each had a similar contribution ranging from 16.7% to 18.6%. The top five industrial sources, including plastic products, rubber products, chemical fiberproducts, the chemical industry, and oil refining, accounted for nearly 70.0% of industrial emissions. Beijing, Chongqing, Shanghai, Jiangsu, and Guangdong were the five provinces contributing the largest integrated effects. For the VOC species from emissions showed the largest contributions were styrene, toluene, ethylene, benzene, and m/p-xylene.展开更多
It is of important practical significance to reduce NOx emission and CO2 emission in China's cement industry.This paper firstly identifies key factors that influence China's future cement demand,and then uses ...It is of important practical significance to reduce NOx emission and CO2 emission in China's cement industry.This paper firstly identifies key factors that influence China's future cement demand,and then uses the Gompertz model to project China's future cement demand and production.Furthermore,the multi-pollutant abatement planning model(MAP)was developed based on the TIMES model to analyze the co-benefits of CO2 and NOx control in China's cement industry.During modeling analysis,three scenarios such as basic as usual scenario(BAU),moderately low carbon scenario(MLC),and radically low carbon scenario(RLC),were built according to different policy constraints and emission control goals.Moreover,the benefits of co-controlling NOx and CO2 emission in China's cement industry have been estimated.Finally,this paper proposes a cost-efficient,green,and low carbon development roadmap for the Chinese cement sector,and puts forwards countermeasures as follows:first,different ministries should enhance communication and coordination about how to promote the co-control of NOx and CO2 in cement industry.Second,co-control technology list should be issued timely for cement industry,and the R&D investment on new technologies and demonstration projects should be increased.Third,the phase-out of old cement capacity needs to be continued at policy level.Fourth,it is important to scientifically evaluate the relevant environmental impact and adverse motivation of ammonia production by NOx removal requirement in cement industry.展开更多
Mine dust is classified as one of five natural coal mining disasters because it can harm the health of miners and poses a serious threat to the safety of the coal mine. Therefore, preparation of an effective dust supp...Mine dust is classified as one of five natural coal mining disasters because it can harm the health of miners and poses a serious threat to the safety of the coal mine. Therefore, preparation of an effective dust suppression agent is highly desired. To improve the capture efficiency of fine dust, this study examines the dust suppression effects of various combinations of wetting agents, additives, and coagulation agents by using the optimum seeking method to reduce mine dust, particularly respirable particles. The optimal formula is shown to contain 10wt% fatty alcohol polyoxyethylene ether(JFC), 4.96wt% cationic polyacrylamide, and 4wt% calcium chloride. The dust suppression effect can be achieved at 96.1% in 5 min by using the optimal formula.展开更多
基金supported by the Earmarked Fund for Modern Agro-industry Technology Research System,China(Project No.CARS-01-46)the National Key Research and Development Program,China(Project No.2017YFD0200800)+1 种基金the Innovative Talents Promotion Plan of Ministry of Science and Technology,China(No.2017RA2211)the Project of Promoting Talents in Liaoning Province,China(XLYC1802094).
文摘After entering the twenty-first century,biochar has become a focal point of multidisciplinary research because of its special characteristics,broad application,and promising development prospects.Basic and applied research on the application of biochar in the areas of agriculture,environment,and energy have increased dramatically in the face of food security,environmental pollution,and energy shortage.Although there are some disputes about biochar research,many studies have demonstrated the importance of biochar research from the perspective of scientific advancement and practical application.This paper briefly recalls the history of biochar application;introduces research progress on the basic characteristics of biochar and its associated production technologies;summarizes the research status and existing problems of biochar application in the areas of agriculture,environment,and energy;and analyzes the potential problems and development trends of biochar research in the future.
文摘Volatile organic compounds(VOCs)released from the waste treatment facilities have become a significant issue because they are not only causing odor nuisance but may also hazard to human health.Non-thermal plasma(NTP)technologies are newly developed methods and became a research trend in recent years regarding the removal of VOCs from the air stream.Due to its unique characteristics,such as rapid response at room temperature,bulk homogenized volume,high reaction efficiency,dielectric barrier discharge(DBD)plasma technology is considered one of the most promising techniques of NTP.This paper reviews recent progress of DBD plasma technology for abatement of VOCs.The principle of plasma generation in DBD and its configurations(electrode,discharge gap,dielectric barrier material,etc.)are discussed in details.Based on previously published literature,attention has been paid on the effect of DBD configuration on the removal of VOCs.Effect of various process parameters such as initial concentration,gas feeding rate,oxygen content and input power on VOCs removal are also considered.Moreover,the role of catalysis and inhibitors in VOCs removal by DBD system are presented.Finally,a modified configuration of the DBD reactor,i.e.double dielectric barrier discharge(DDBD)for the abatement of VOCs is discussed.It was suggested that the DDBD plasma reactor could be used for higher conversion efficiency as well as for avoiding solid residue deposition on the electrode.These depositions can interfere with the performance of the reactor.
基金supported by the Fund for the Creative Research Groups of China (No. 50921064)the Special Co-construction Project of Beijing Municipal Commission of Education
文摘Significant concerns have been raised over the presence of antibiotics including tetracyclines in aquatic environments.A series of FeMn binary oxide with different Fe:Mn molar ratios was synthesized by a simultaneous oxidation and coprecipitation process for TC removal.Results showed that Fe-Mn binary oxide had higher removal efficiency than that of hydrous iron oxide and hydrous manganese oxide,and that the oxide with a Fe:Mn molar ratio of 5:1 was the best in removal than other molar ratios.The tetracycline removal was highly pH dependent.The removal of tetracycline decreased with the increase of initial concentration,but the absolute removal quantity was more at high concentration.The presence of cations and anions such as Ca2+,Mg2+,CO32-and SO42-had no significant effect on the tetracycline removal in our experimental conditions,while SiO32-and PO43-had hindered the adsorption of tetracycline.The mechanism investigation found that tetracycline removal was mainly achieved by the replacement of surface hydroxyl groups by the tetracycline species and formation of surface complexes at the water/oxide interface.This primary study suggests that Fe-Mn binary oxide with a proper Fe:Mn molar ratio will be a very promising material for the removal of tetracycline from aqueous solutions.
基金This study was funded by the Natural Science Foundation for Outstanding Young Scholars (Grant No. 41125018) and Natural Science Foundation Key Project (Grant No. 41330635). The fimding source was involved in the data collection of this paper.
文摘Volatile organic compounds (VOCs) play important roles in the atmosphere via three main pathways: photochemical ozone formation, secondary organic aerosol production, and direct toxicity to humans. Fewstudies have integrated these effect, s to prioritize control measures for VOC.s sources. In this study,we developed a multi-effects evaluation methodology based on updated emission inventories and source profiles, by combining the ozone formation potential (OFP), secondary organic aerosol potential (SOAP), and VOC toxicity data. We derived species-specific emission inventories for 152 sources. The OFPs, SOAPs, and toxicity of each source were estimated, the contribution and sharing of source to each of these adverse effects were calculated. Weightings were given to the three adverse effects by expert scoring, and then the integrated effect was determined. Taking 2012 as the base year,solvent use and industrial process were found to be the most important anthropogenic sources, accounting for 24.2% and 23.1% of the integrated effect, respectively, followed by biomass burning, transportation, and fossil fuel combustion, each had a similar contribution ranging from 16.7% to 18.6%. The top five industrial sources, including plastic products, rubber products, chemical fiberproducts, the chemical industry, and oil refining, accounted for nearly 70.0% of industrial emissions. Beijing, Chongqing, Shanghai, Jiangsu, and Guangdong were the five provinces contributing the largest integrated effects. For the VOC species from emissions showed the largest contributions were styrene, toluene, ethylene, benzene, and m/p-xylene.
文摘It is of important practical significance to reduce NOx emission and CO2 emission in China's cement industry.This paper firstly identifies key factors that influence China's future cement demand,and then uses the Gompertz model to project China's future cement demand and production.Furthermore,the multi-pollutant abatement planning model(MAP)was developed based on the TIMES model to analyze the co-benefits of CO2 and NOx control in China's cement industry.During modeling analysis,three scenarios such as basic as usual scenario(BAU),moderately low carbon scenario(MLC),and radically low carbon scenario(RLC),were built according to different policy constraints and emission control goals.Moreover,the benefits of co-controlling NOx and CO2 emission in China's cement industry have been estimated.Finally,this paper proposes a cost-efficient,green,and low carbon development roadmap for the Chinese cement sector,and puts forwards countermeasures as follows:first,different ministries should enhance communication and coordination about how to promote the co-control of NOx and CO2 in cement industry.Second,co-control technology list should be issued timely for cement industry,and the R&D investment on new technologies and demonstration projects should be increased.Third,the phase-out of old cement capacity needs to be continued at policy level.Fourth,it is important to scientifically evaluate the relevant environmental impact and adverse motivation of ammonia production by NOx removal requirement in cement industry.
基金National Natural Science Funds-Coal Joint Funds Key Support Project (No. U1261205)Basic Research Plan Project of Science and Technology of Qingdao (No. 13-1-4-149-jch)Key Technology Development Projects of Qingdao Economic and Technological Development Zone (No. 2013-1-66) for providing the financial support to this research
文摘Mine dust is classified as one of five natural coal mining disasters because it can harm the health of miners and poses a serious threat to the safety of the coal mine. Therefore, preparation of an effective dust suppression agent is highly desired. To improve the capture efficiency of fine dust, this study examines the dust suppression effects of various combinations of wetting agents, additives, and coagulation agents by using the optimum seeking method to reduce mine dust, particularly respirable particles. The optimal formula is shown to contain 10wt% fatty alcohol polyoxyethylene ether(JFC), 4.96wt% cationic polyacrylamide, and 4wt% calcium chloride. The dust suppression effect can be achieved at 96.1% in 5 min by using the optimal formula.