The microstructures and mechanical properties of the rolled AZ61 alloys containing different contents of Y (0, 0.5, 0.9, 1.4%Y respectively) were studied. Phase analysis was performed by X-ray diffraction(XRD). Micros...The microstructures and mechanical properties of the rolled AZ61 alloys containing different contents of Y (0, 0.5, 0.9, 1.4%Y respectively) were studied. Phase analysis was performed by X-ray diffraction(XRD). Microstructures of experimental materials were observed by optical microscope(OM) and scanning electron microscope(SEM) equipped with energy dispersive spectrometer(EDS). The results show that the alloys with variable Y contents all contain a second-phase Al2Y. The amount of Al2Y increases with the increasing of Y content while that of Mg17Al12 decreases. Moreover, Y refines the microstructures of as-cast and rolled alloys. The finest average grain size is obtained in the alloy containing 0.9%Y with the best mechanical properties. When the Y content is up to 1.4%, Al2Y phase in the alloy coarsens, which leads to the drop of tensile strength.展开更多
In order to obtain fine-microstructure magnesium alloys with superior mechanical properties, AZ61 alloy was processed by friction stir processing(FSP) combined with rapid heat sink. It is found that ultrafine-grained ...In order to obtain fine-microstructure magnesium alloys with superior mechanical properties, AZ61 alloy was processed by friction stir processing(FSP) combined with rapid heat sink. It is found that ultrafine-grained microstructure with average size less than 300 nm is observed in the resultant AZ61 alloy. The mean microhardness of the ultra-fine region reaches Hv120-130, two times higher than that of AZ61 substrate. All these results demonstrate clearly that under a cooling rate high enough, ultra-fine structure inAZ61 alloy with superior mechanical properties can be produced by one pass FSP via dynamic recrystallization.展开更多
基金Project(2004GK1008-2) supported by the Science and Technology Program of Hunan Province, China Project supported by the Key Laboratory for Nonferrous Metal of Education Department of Hunan Province, China
文摘The microstructures and mechanical properties of the rolled AZ61 alloys containing different contents of Y (0, 0.5, 0.9, 1.4%Y respectively) were studied. Phase analysis was performed by X-ray diffraction(XRD). Microstructures of experimental materials were observed by optical microscope(OM) and scanning electron microscope(SEM) equipped with energy dispersive spectrometer(EDS). The results show that the alloys with variable Y contents all contain a second-phase Al2Y. The amount of Al2Y increases with the increasing of Y content while that of Mg17Al12 decreases. Moreover, Y refines the microstructures of as-cast and rolled alloys. The finest average grain size is obtained in the alloy containing 0.9%Y with the best mechanical properties. When the Y content is up to 1.4%, Al2Y phase in the alloy coarsens, which leads to the drop of tensile strength.
基金Project(50771067) supported by the National Natural Science Foundation of China
文摘In order to obtain fine-microstructure magnesium alloys with superior mechanical properties, AZ61 alloy was processed by friction stir processing(FSP) combined with rapid heat sink. It is found that ultrafine-grained microstructure with average size less than 300 nm is observed in the resultant AZ61 alloy. The mean microhardness of the ultra-fine region reaches Hv120-130, two times higher than that of AZ61 substrate. All these results demonstrate clearly that under a cooling rate high enough, ultra-fine structure inAZ61 alloy with superior mechanical properties can be produced by one pass FSP via dynamic recrystallization.