There is a lack of understanding about the bacterial,fungal and archaeal communities’composition of solid-phase denitrification(SPD)systems.We investigated four SPD systems with different carbon sources by analyzing ...There is a lack of understanding about the bacterial,fungal and archaeal communities’composition of solid-phase denitrification(SPD)systems.We investigated four SPD systems with different carbon sources by analyzing microbial gene sequences based on operational taxonomic unit(OTU)and amplicon sequence variant(ASV).The results showed that the corncob-polyvinyl alcohol sodium alginate-polycaprolactone(CPSP,0.86±0.04 mg NO_(3)^(−)-N/(g·day))and corncob(0.85±0.06 mg NO_(3)^(−)-N/(g·day))had better denitrification efficiency than polycaprolactone(PCL,0.29±0.11 mg NO_(3)^(−)-N/(g·day))and polyvinyl alcoholsodium alginate(PVA-SA,0.24±0.07 mg NO_(3)^(−)-N/(g·day)).The bacterial,fungal and archaeal microbial composition was significantly different among carbon source types such as Proteobacteria in PCL(OTU:83.72%,ASV:82.49%)and Rozellomycota in PVA-SA(OTU:71.99%,ASV:81.30%).ASV methods can read more microbial units than that of OTU and exhibit higher alpha diversity and classify some species that had not been identified by OTU such as Nanoarchaeota phylum,unclassified_f_Xanthobacteraceae genus,etc.,indicating ASV may be more conducive to understand SPD microbial communities.The co-occurring network showed some correlation between the bacteria fungi and archaea species,indicating different species may collaborate in SPD systems.Similar KEGG function prediction results were obtained in two bioinformatic methods generally and some fungi and archaea functions should not be ignored in SPD systems.These results may be beneficial for understanding microbial communities in SPD systems.展开更多
Oxidation of As^Ⅲ by three types of manganese oxide minerals affected by goethite was investigated by chemical analysis, equilibrium redox, X-ray diffraction (XRD) and transmission electron microscopy (TEM). Thre...Oxidation of As^Ⅲ by three types of manganese oxide minerals affected by goethite was investigated by chemical analysis, equilibrium redox, X-ray diffraction (XRD) and transmission electron microscopy (TEM). Three synthesized Mn oxide minerals of different types, birnessite, todorokite, and hausmannite, could actively oxidize As^Ⅲ to Asv, and greatly varied in their oxidation ability. Layer structured birnessite exhibited the highest capacity of As^Ⅲ oxidation, followed by the tunnel structured todorokite. Lower oxide hansmannite possessed much low capacity of As^Ⅲ oxidation, and released more Mn^2+ than birnessite and todorokite during the oxidation. The maximum amount of Asv produced during the oxidation of As^Ⅲ by Mn oxide minerals was in the order: birnessite (480.4 mmol/kg) 〉 todorokite (279.6 mmol/kg) 〉 hansmannite (117.9 mmol/kg). The oxidation capacity of the Mn oxide minerals was found to be relative to the composition, crystallinity, and surface properties. In the presence of goethite oxidation of As^Ⅲ by Mn oxide minerals increased, with maximum amounts of Asv being 651.0 mmol/kg for birnessite, 332.3 mmol/kg for todorokite and 159.4 mmol/kg for hansmannite. Goethite promoted As^Ⅲ oxidation on the surface of Mn oxide minerals through adsorption of the Asv produced, incurring the decrease of Asv concentration in solutions. Thus, the combined effects of the oxidation (by Mn oxide minerals)-adsorption (by goethite) lead to rapid oxidation and immobilization of As in soils and sediments and alleviation of the As^Ⅲ toxicity in the environments.展开更多
The complexation capacity for heavy metals (Cu, Cd, Pb) were determined by anodic stripping voltammetry in South China Sea, Hulun Lake and Wuliang Suhai. The conditional stability constants and complexation capacity i...The complexation capacity for heavy metals (Cu, Cd, Pb) were determined by anodic stripping voltammetry in South China Sea, Hulun Lake and Wuliang Suhai. The conditional stability constants and complexation capacity index were calculated. The data showed that the complexation capacity of the Hulun Lake was greater than that of seawater and Wuliang Suhai. The sequence of complexation capacity is C (CuL)> C (CdL)> C (PbL), the values are in concord with results of analysis on dissolved organic carbon. The conditional stability constants were in an opposite sequence: K (CuL)< K (CdL)< K (PbL). When log K are similar, the greater the complexation capacity, the greater the complexation capacity index.展开更多
基金Thisworkwas supported by the National Key R&D Program of China(No.2019YFC0408602).
文摘There is a lack of understanding about the bacterial,fungal and archaeal communities’composition of solid-phase denitrification(SPD)systems.We investigated four SPD systems with different carbon sources by analyzing microbial gene sequences based on operational taxonomic unit(OTU)and amplicon sequence variant(ASV).The results showed that the corncob-polyvinyl alcohol sodium alginate-polycaprolactone(CPSP,0.86±0.04 mg NO_(3)^(−)-N/(g·day))and corncob(0.85±0.06 mg NO_(3)^(−)-N/(g·day))had better denitrification efficiency than polycaprolactone(PCL,0.29±0.11 mg NO_(3)^(−)-N/(g·day))and polyvinyl alcoholsodium alginate(PVA-SA,0.24±0.07 mg NO_(3)^(−)-N/(g·day)).The bacterial,fungal and archaeal microbial composition was significantly different among carbon source types such as Proteobacteria in PCL(OTU:83.72%,ASV:82.49%)and Rozellomycota in PVA-SA(OTU:71.99%,ASV:81.30%).ASV methods can read more microbial units than that of OTU and exhibit higher alpha diversity and classify some species that had not been identified by OTU such as Nanoarchaeota phylum,unclassified_f_Xanthobacteraceae genus,etc.,indicating ASV may be more conducive to understand SPD microbial communities.The co-occurring network showed some correlation between the bacteria fungi and archaea species,indicating different species may collaborate in SPD systems.Similar KEGG function prediction results were obtained in two bioinformatic methods generally and some fungi and archaea functions should not be ignored in SPD systems.These results may be beneficial for understanding microbial communities in SPD systems.
基金the National Natural Science Foundation of China (Nos. 40471070 and 40403009) the Key Project of the Ministry of Education of China (No. 105122) for financial supports to this research.
文摘Oxidation of As^Ⅲ by three types of manganese oxide minerals affected by goethite was investigated by chemical analysis, equilibrium redox, X-ray diffraction (XRD) and transmission electron microscopy (TEM). Three synthesized Mn oxide minerals of different types, birnessite, todorokite, and hausmannite, could actively oxidize As^Ⅲ to Asv, and greatly varied in their oxidation ability. Layer structured birnessite exhibited the highest capacity of As^Ⅲ oxidation, followed by the tunnel structured todorokite. Lower oxide hansmannite possessed much low capacity of As^Ⅲ oxidation, and released more Mn^2+ than birnessite and todorokite during the oxidation. The maximum amount of Asv produced during the oxidation of As^Ⅲ by Mn oxide minerals was in the order: birnessite (480.4 mmol/kg) 〉 todorokite (279.6 mmol/kg) 〉 hansmannite (117.9 mmol/kg). The oxidation capacity of the Mn oxide minerals was found to be relative to the composition, crystallinity, and surface properties. In the presence of goethite oxidation of As^Ⅲ by Mn oxide minerals increased, with maximum amounts of Asv being 651.0 mmol/kg for birnessite, 332.3 mmol/kg for todorokite and 159.4 mmol/kg for hansmannite. Goethite promoted As^Ⅲ oxidation on the surface of Mn oxide minerals through adsorption of the Asv produced, incurring the decrease of Asv concentration in solutions. Thus, the combined effects of the oxidation (by Mn oxide minerals)-adsorption (by goethite) lead to rapid oxidation and immobilization of As in soils and sediments and alleviation of the As^Ⅲ toxicity in the environments.
文摘The complexation capacity for heavy metals (Cu, Cd, Pb) were determined by anodic stripping voltammetry in South China Sea, Hulun Lake and Wuliang Suhai. The conditional stability constants and complexation capacity index were calculated. The data showed that the complexation capacity of the Hulun Lake was greater than that of seawater and Wuliang Suhai. The sequence of complexation capacity is C (CuL)> C (CdL)> C (PbL), the values are in concord with results of analysis on dissolved organic carbon. The conditional stability constants were in an opposite sequence: K (CuL)< K (CdL)< K (PbL). When log K are similar, the greater the complexation capacity, the greater the complexation capacity index.