期刊导航
期刊开放获取
cqvip
退出
期刊文献
+
任意字段
题名或关键词
题名
关键词
文摘
作者
第一作者
机构
刊名
分类号
参考文献
作者简介
基金资助
栏目信息
任意字段
题名或关键词
题名
关键词
文摘
作者
第一作者
机构
刊名
分类号
参考文献
作者简介
基金资助
栏目信息
检索
高级检索
期刊导航
共找到
1
篇文章
<
1
>
每页显示
20
50
100
已选择
0
条
导出题录
引用分析
参考文献
引证文献
统计分析
检索结果
已选文献
显示方式:
文摘
详细
列表
相关度排序
被引量排序
时效性排序
一种基于SVM和EMD的齿轮故障诊断方法
被引量:
56
1
作者
于德介
杨宇
程军圣
《机械工程学报》
EI
CAS
CSCD
北大核心
2005年第1期140-144,共5页
支持矢量机(Support vector machine,SVM)有比神经网络更强的泛化能力,且能保证找到的极值解就是全局最优解,同时它还较好地解决了小样本的学习分类问题。针对齿轮振动信号的非平稳特征和现实中难以获得大量故障样本的实际情况,提出了...
支持矢量机(Support vector machine,SVM)有比神经网络更强的泛化能力,且能保证找到的极值解就是全局最优解,同时它还较好地解决了小样本的学习分类问题。针对齿轮振动信号的非平稳特征和现实中难以获得大量故障样本的实际情况,提出了一种基于经验模态分解(Empirical mode decomposition,EMD)和支持矢量机的齿轮故障诊断方法。首先对原始信号进行经验模态分解,将其分解为多个平稳的固有模态函数(Intrinsic mode function,IMF)之和,然后对每一个IMF分量建立AR模型,最后提取模型的自回归参数和残差的方差作为故障特征矢量,并以此作为SVM分类器的输入参数来识别齿轮的工作状态和故障类型。试验结果表明,在小样本情况下仍能准确、有效地对齿轮的工作状态和故障类型进行分类。
展开更多
关键词
EMD
SVM
齿轮
故障诊断
ar
摸
型
下载PDF
职称材料
题名
一种基于SVM和EMD的齿轮故障诊断方法
被引量:
56
1
作者
于德介
杨宇
程军圣
机构
湖南大学机械与汽车工程学院
出处
《机械工程学报》
EI
CAS
CSCD
北大核心
2005年第1期140-144,共5页
基金
国家自然科学基金(50275050)高等学校博士点专项科研基金(20020532024)资助项目。
文摘
支持矢量机(Support vector machine,SVM)有比神经网络更强的泛化能力,且能保证找到的极值解就是全局最优解,同时它还较好地解决了小样本的学习分类问题。针对齿轮振动信号的非平稳特征和现实中难以获得大量故障样本的实际情况,提出了一种基于经验模态分解(Empirical mode decomposition,EMD)和支持矢量机的齿轮故障诊断方法。首先对原始信号进行经验模态分解,将其分解为多个平稳的固有模态函数(Intrinsic mode function,IMF)之和,然后对每一个IMF分量建立AR模型,最后提取模型的自回归参数和残差的方差作为故障特征矢量,并以此作为SVM分类器的输入参数来识别齿轮的工作状态和故障类型。试验结果表明,在小样本情况下仍能准确、有效地对齿轮的工作状态和故障类型进行分类。
关键词
EMD
SVM
齿轮
故障诊断
ar
摸
型
Keywords
EMD SVM Ge
ar
s Fault diagnosis
ar
model
分类号
TH165 [机械工程—机械制造及自动化]
下载PDF
职称材料
题名
作者
出处
发文年
被引量
操作
1
一种基于SVM和EMD的齿轮故障诊断方法
于德介
杨宇
程军圣
《机械工程学报》
EI
CAS
CSCD
北大核心
2005
56
下载PDF
职称材料
已选择
0
条
导出题录
引用分析
参考文献
引证文献
统计分析
检索结果
已选文献
上一页
1
下一页
到第
页
确定
用户登录
登录
IP登录
使用帮助
返回顶部