This paper investigates structure equation and Mei conserved quantity of Mei symmetry of Appell equations for non-Chetaev nonholonomic systems. Appell equations and differential equations of motion for non-Chetaev non...This paper investigates structure equation and Mei conserved quantity of Mei symmetry of Appell equations for non-Chetaev nonholonomic systems. Appell equations and differential equations of motion for non-Chetaev nonholonomic mechanical systems are established. A new expression of the total derivative of the function with respect to time t along the trajectory of a curve of the system is obtained, the definition and the criterion of Mei symmetry of Appell equations under the infinitesimal transformations of groups are also given. The expressions of the structure equation and the Mei conserved quantity of Mei symmetry in the Appell function are obtained. An example is given to illustrate the application of the results.展开更多
Structural equation and Mei conserved quantity of Mei symmetry for Appell equations in holonomic systems with unilateral constraints are investigated. Appell equations and differential equations of motion for holonomi...Structural equation and Mei conserved quantity of Mei symmetry for Appell equations in holonomic systems with unilateral constraints are investigated. Appell equations and differential equations of motion for holonomie mechanic systems with unilateral constraints axe established. The definition and the criterion of Mei symmetry for Appell equations in holonomic systems with unilateral constraints under the infinitesimal transformations of groups axe also given. The expressions of the structural equation and Mei conserved quantity of Mei symmetry for Appell equations in holonomic systems with unilateral constraints expressed by Appell functions are obtained. An example is given to illustrate the application of the results.展开更多
A type of new conserved quantity deduced from Mei symmetry of Appell equations for a holonomic system with unilateral constraints is investigated. The expressions of new structural equation and new conserved quantity ...A type of new conserved quantity deduced from Mei symmetry of Appell equations for a holonomic system with unilateral constraints is investigated. The expressions of new structural equation and new conserved quantity deduced from Mei symmetry of Appell equations for a holonomic system with unilateral constraints expressed by Appell functions are obtained. An example is given to illustrate the application of the results.展开更多
Lie symmetry and conserved quantity deduced from Lie symmetry of Appell equations in a dynamical system of relative motion with Chetaev-type nonholonomic constraints are studied.The differential equations of motion of...Lie symmetry and conserved quantity deduced from Lie symmetry of Appell equations in a dynamical system of relative motion with Chetaev-type nonholonomic constraints are studied.The differential equations of motion of the Appell equation for the system,the definition and criterion of Lie symmetry,the condition and the expression of generalized Hojman conserved quantity deduced from Lie symmetry for the system are obtained.The condition and the expression of Hojman conserved quantity deduced from special Lie symmetry for the system under invariable time are further obtained.An example is given to illustrate the application of the results.展开更多
Mei symmetry and Mei conserved quantity of Appell equations for a variable mass holonomic system are investi- gated. Appell equations and differential equations of motion for a variable mass holonomic system are estab...Mei symmetry and Mei conserved quantity of Appell equations for a variable mass holonomic system are investi- gated. Appell equations and differential equations of motion for a variable mass holonomic system are established. A new expression of the total first derivative of the function with respect of time t along the systematic motional track curve, and the definition and the criterion of Mei symmetry for Appell equations under the infinitesimal transformations of groups are given. The expressions of the structural equation and Mei conserved quantity for Mei symmetry in Appell are obtained. An example is given to illustrate the application of the results.展开更多
基金Project supported by the National Natural Science Foundation of China (Grant No 10572021)
文摘This paper investigates structure equation and Mei conserved quantity of Mei symmetry of Appell equations for non-Chetaev nonholonomic systems. Appell equations and differential equations of motion for non-Chetaev nonholonomic mechanical systems are established. A new expression of the total derivative of the function with respect to time t along the trajectory of a curve of the system is obtained, the definition and the criterion of Mei symmetry of Appell equations under the infinitesimal transformations of groups are also given. The expressions of the structure equation and the Mei conserved quantity of Mei symmetry in the Appell function are obtained. An example is given to illustrate the application of the results.
基金Supported by the National Natural Science Foundation of China under Grant No.10572021the Preparatory Research Foundation of Jiangnan University under Grant No.2008LYY011
文摘Structural equation and Mei conserved quantity of Mei symmetry for Appell equations in holonomic systems with unilateral constraints are investigated. Appell equations and differential equations of motion for holonomie mechanic systems with unilateral constraints axe established. The definition and the criterion of Mei symmetry for Appell equations in holonomic systems with unilateral constraints under the infinitesimal transformations of groups axe also given. The expressions of the structural equation and Mei conserved quantity of Mei symmetry for Appell equations in holonomic systems with unilateral constraints expressed by Appell functions are obtained. An example is given to illustrate the application of the results.
基金Project supported by the National Natural Science Foundation of China (Grant No. 10572021)the Preparatory Research Foundation of Jiangnan University of China (Grant No. 2008LYY011)
文摘A type of new conserved quantity deduced from Mei symmetry of Appell equations for a holonomic system with unilateral constraints is investigated. The expressions of new structural equation and new conserved quantity deduced from Mei symmetry of Appell equations for a holonomic system with unilateral constraints expressed by Appell functions are obtained. An example is given to illustrate the application of the results.
基金Project supported by the National Natural Science Foundation of China (Grant No. 11142014)the Scientific Research and Innovation Plan for College Graduates of Jiangsu Province,China (Grant No. CXLX12_0720)
文摘Lie symmetry and conserved quantity deduced from Lie symmetry of Appell equations in a dynamical system of relative motion with Chetaev-type nonholonomic constraints are studied.The differential equations of motion of the Appell equation for the system,the definition and criterion of Lie symmetry,the condition and the expression of generalized Hojman conserved quantity deduced from Lie symmetry for the system are obtained.The condition and the expression of Hojman conserved quantity deduced from special Lie symmetry for the system under invariable time are further obtained.An example is given to illustrate the application of the results.
基金Project supported by the National Natural Science Foundation of China (Grant No. 10572021)the Preparatory Research Foundation of Jiangnan University,China (Grant No. 2008LYY011)
文摘Mei symmetry and Mei conserved quantity of Appell equations for a variable mass holonomic system are investi- gated. Appell equations and differential equations of motion for a variable mass holonomic system are established. A new expression of the total first derivative of the function with respect of time t along the systematic motional track curve, and the definition and the criterion of Mei symmetry for Appell equations under the infinitesimal transformations of groups are given. The expressions of the structural equation and Mei conserved quantity for Mei symmetry in Appell are obtained. An example is given to illustrate the application of the results.