恶意代码作者通常会不断演化软件版本,形成恶意软件家族,现有的恶意软件家族分类方法,在特征选择的鲁棒性和分类算法的有效性、准确性方面还有待改进。为此,文章提出一种基于混合特征的深度自动编码的恶意软件分类方法。首先,通过提取...恶意代码作者通常会不断演化软件版本,形成恶意软件家族,现有的恶意软件家族分类方法,在特征选择的鲁棒性和分类算法的有效性、准确性方面还有待改进。为此,文章提出一种基于混合特征的深度自动编码的恶意软件分类方法。首先,通过提取恶意样本的动态API序列特征和静态字节熵特征作为混合特征,可以获取恶意样本的全局结构;然后,利用深度自编码器对高维特征进行降维处理;最后,将获得的低维特征输入到极端梯度提升(eXtreme Gradient Boosting,XGBoost)算法分类器中,获得恶意软件的家族分类。实验结果表明,该方法可以正确、有效地区分不同恶意软件家族,分类的微平均AUC(Micro—average Area Under Curve)达到98.3%,宏平均AUC(Macro—average Area Under Curve)达到97.9%。展开更多
挖矿恶意软件是一种隐匿在受害主机中,在未经用户许可的情况下使用系统资源挖掘加密货币的恶意软件,其不仅影响计算机系统的正常运行也会危害系统安全.目前基于动态分析的挖矿恶意软件检测方法主要以挖矿恶意软件的工作量证明行为为检...挖矿恶意软件是一种隐匿在受害主机中,在未经用户许可的情况下使用系统资源挖掘加密货币的恶意软件,其不仅影响计算机系统的正常运行也会危害系统安全.目前基于动态分析的挖矿恶意软件检测方法主要以挖矿恶意软件的工作量证明行为为检测对象,难以实现对此类软件的及时检测.针对上述问题,通过分析挖矿恶意软件的运行过程,发现挖矿恶意软件在建立网络连接前行为多样,由此提出“挖矿软件行为多样期(Behavioral Diversity Period of Cryptominer,BDP)”的概念并进一步提出面向行为多样期的挖矿恶意软件早期检测方法(Cryptomining Malware Early Detection Method in Behavioral Diversity Period,CEDMB). CEDMB使用n-gram模型和TF-IDF(Term Frequency-Inverse Document Frequency)算法从BDP内的API(Application Programming Interface)序列中提取特征以训练检测模型.实验结果显示,CEDMB使用随机森林算法时可以在软件开始运行后10 s内以96.55%的F1-score值判别其是良性软件还是挖矿恶意软件.展开更多
文摘恶意代码作者通常会不断演化软件版本,形成恶意软件家族,现有的恶意软件家族分类方法,在特征选择的鲁棒性和分类算法的有效性、准确性方面还有待改进。为此,文章提出一种基于混合特征的深度自动编码的恶意软件分类方法。首先,通过提取恶意样本的动态API序列特征和静态字节熵特征作为混合特征,可以获取恶意样本的全局结构;然后,利用深度自编码器对高维特征进行降维处理;最后,将获得的低维特征输入到极端梯度提升(eXtreme Gradient Boosting,XGBoost)算法分类器中,获得恶意软件的家族分类。实验结果表明,该方法可以正确、有效地区分不同恶意软件家族,分类的微平均AUC(Micro—average Area Under Curve)达到98.3%,宏平均AUC(Macro—average Area Under Curve)达到97.9%。
文摘挖矿恶意软件是一种隐匿在受害主机中,在未经用户许可的情况下使用系统资源挖掘加密货币的恶意软件,其不仅影响计算机系统的正常运行也会危害系统安全.目前基于动态分析的挖矿恶意软件检测方法主要以挖矿恶意软件的工作量证明行为为检测对象,难以实现对此类软件的及时检测.针对上述问题,通过分析挖矿恶意软件的运行过程,发现挖矿恶意软件在建立网络连接前行为多样,由此提出“挖矿软件行为多样期(Behavioral Diversity Period of Cryptominer,BDP)”的概念并进一步提出面向行为多样期的挖矿恶意软件早期检测方法(Cryptomining Malware Early Detection Method in Behavioral Diversity Period,CEDMB). CEDMB使用n-gram模型和TF-IDF(Term Frequency-Inverse Document Frequency)算法从BDP内的API(Application Programming Interface)序列中提取特征以训练检测模型.实验结果显示,CEDMB使用随机森林算法时可以在软件开始运行后10 s内以96.55%的F1-score值判别其是良性软件还是挖矿恶意软件.