利用第三代空气质量模型CMAQ(community multiscale air quality modelling system)模拟的PM2.5垂直分层数据和中尺度气象模型WRF(weather research and forcasting model)模拟的高分辨率湿度数据,分别对MODIS AOD(aerosol optical dep...利用第三代空气质量模型CMAQ(community multiscale air quality modelling system)模拟的PM2.5垂直分层数据和中尺度气象模型WRF(weather research and forcasting model)模拟的高分辨率湿度数据,分别对MODIS AOD(aerosol optical depth)资料进行垂直与湿度订正,建立了订正后的AOD数据与PM2.5地面监测数据之间的线性拟合模型,其线性相关系数r=0.77(n=57,P<0.01).基于此线性拟合模型,首次反演了2013年1月全国10 km分辨率PM2.5月均浓度的空间分布特征,并分析了人口暴露水平.结果表明,2013年1月我国PM2.5月均浓度大于100μg·m-3、200μg·m-3的面积占国土面积的比例分别高达10.99%、1.34%,暴露人口占全国总人口的比例分别高达45.01%、6.31%.展开更多
Advanced Very High Resolution Radiometer(AVHRR)onboard National Oceanic and Atmospheric Administration(NOAA)satellites can provide over 40 years of global remote sensing observations,which can be used to retrieve long...Advanced Very High Resolution Radiometer(AVHRR)onboard National Oceanic and Atmospheric Administration(NOAA)satellites can provide over 40 years of global remote sensing observations,which can be used to retrieve long-term aerosol optical depth(AOD).This is of great significance to the study of global climate change.In this paper,we proposed an algorithm to jointly calculate AOD and land surface properties from AVHRR observations.With assumptions that AOD doesn’t vary in adjacent space and earth surface property doesn’t vary in two days,the algorithm considered non-Lambertian surface reflection based on the shape of bidirectional reflectance distribution function(BRDF shape)and obtained AOD and surface property by optimal estimation(OE)method.The algorithm has been applied to NOAA-7,9,11,14,16,18,and 19 satellites and AVHRR-retrieved AOD with 5×10 km over China(15°–60°N,70°–140°E)has been obtained from 1982 to 2016.Comparisons of AVHRR-retrieved AOD against AErosol RObotic NETwork(AERONET)(in and around China)and China Aerosol Remote Sensing Network(CARSNET)AOD show good consistency with 62.62%points within the uncertainty ofΔτ=±(0.05+0.25τ)and root-mean-square error(RMSE)of 0.26.Further comparison of the monthly mean AOD of multiple AOD datasets in the‘Beijing’,‘Dalanzadgad’,‘NCU_Taiwan’and‘Kanpur’stations shows that the results of the algorithm are stable.The yearly averaged AOD data also has similar agreements with MERRA-2(The Modern-Era Retrospective analysis for Research and Applications,Version 2)and AVHRRDB data(AVHRR‘Deep Blue’aerosol data set).The multi-year mean correlation coefficient is 0.70 and 0.61 and the percentages within the uncertainty are 80.01%and 67.29%compared with MERRA-2 AOD and AVHRRDB AOD respectively.展开更多
文摘利用第三代空气质量模型CMAQ(community multiscale air quality modelling system)模拟的PM2.5垂直分层数据和中尺度气象模型WRF(weather research and forcasting model)模拟的高分辨率湿度数据,分别对MODIS AOD(aerosol optical depth)资料进行垂直与湿度订正,建立了订正后的AOD数据与PM2.5地面监测数据之间的线性拟合模型,其线性相关系数r=0.77(n=57,P<0.01).基于此线性拟合模型,首次反演了2013年1月全国10 km分辨率PM2.5月均浓度的空间分布特征,并分析了人口暴露水平.结果表明,2013年1月我国PM2.5月均浓度大于100μg·m-3、200μg·m-3的面积占国土面积的比例分别高达10.99%、1.34%,暴露人口占全国总人口的比例分别高达45.01%、6.31%.
基金supported by National Natural Science Foundation of China:[Grant Number 41871260].
文摘Advanced Very High Resolution Radiometer(AVHRR)onboard National Oceanic and Atmospheric Administration(NOAA)satellites can provide over 40 years of global remote sensing observations,which can be used to retrieve long-term aerosol optical depth(AOD).This is of great significance to the study of global climate change.In this paper,we proposed an algorithm to jointly calculate AOD and land surface properties from AVHRR observations.With assumptions that AOD doesn’t vary in adjacent space and earth surface property doesn’t vary in two days,the algorithm considered non-Lambertian surface reflection based on the shape of bidirectional reflectance distribution function(BRDF shape)and obtained AOD and surface property by optimal estimation(OE)method.The algorithm has been applied to NOAA-7,9,11,14,16,18,and 19 satellites and AVHRR-retrieved AOD with 5×10 km over China(15°–60°N,70°–140°E)has been obtained from 1982 to 2016.Comparisons of AVHRR-retrieved AOD against AErosol RObotic NETwork(AERONET)(in and around China)and China Aerosol Remote Sensing Network(CARSNET)AOD show good consistency with 62.62%points within the uncertainty ofΔτ=±(0.05+0.25τ)and root-mean-square error(RMSE)of 0.26.Further comparison of the monthly mean AOD of multiple AOD datasets in the‘Beijing’,‘Dalanzadgad’,‘NCU_Taiwan’and‘Kanpur’stations shows that the results of the algorithm are stable.The yearly averaged AOD data also has similar agreements with MERRA-2(The Modern-Era Retrospective analysis for Research and Applications,Version 2)and AVHRRDB data(AVHRR‘Deep Blue’aerosol data set).The multi-year mean correlation coefficient is 0.70 and 0.61 and the percentages within the uncertainty are 80.01%and 67.29%compared with MERRA-2 AOD and AVHRRDB AOD respectively.
文摘融合卫星遥感与地面站点的互补优势,进行了华中地区PM2.5的反演研究。基于MODIS L1B数据,结合暗像元法和亮目标法,利用6S大气传输模型反演获得分辨率为1 km的气溶胶光学厚度(AOD);基于M估计理论,将遥感反演的AOD与PM2.5站点数据进行稳健回归分析,并根据回归模型实现大尺度空间连续的PM2.5反演;最后,利用留一交叉验证法,对反演精度进行了验证。结果表明,反演的1 km AOD和MODIS现有的AOD产品相比,与PM2.5站点数据的相关系数从0.683提高到0.883,生成的PM2.5平均绝对误差从23.495μg/m3降低到11.705μg/m3。