采用分子生物学手段16S r DNA克隆文库方法对缺氧/好氧膜生物反应器(AO-MBR)的好氧池与缺氧池中细菌进行了多样性研究。实验结果表明,好氧池污泥样品的克隆文库包括9个类群,其中变形菌(Proteobacteria)和拟杆菌(Bacteroidetes)在文库中...采用分子生物学手段16S r DNA克隆文库方法对缺氧/好氧膜生物反应器(AO-MBR)的好氧池与缺氧池中细菌进行了多样性研究。实验结果表明,好氧池污泥样品的克隆文库包括9个类群,其中变形菌(Proteobacteria)和拟杆菌(Bacteroidetes)在文库中所占比例最大,分别为37.04%和14.81%;其次是酸杆菌(Acidobacteria)、未培养菌(uncultured bacterium)、绿菌(Chlorobi)和未培养的绿弯菌(uncultured Chloroflexi bacterium)、浮霉状菌(Planctomycetes),分别为11.11%、11.11%、7.41%、7.41%和5.56%;硝化螺旋菌(Nitrospirae)和裸藻门(Euglenozoa)所占比例相对较小,均为1.85%。缺氧池样品克隆文库包括10个类群,其中变形菌(Proteobacteria)、拟杆菌(Bacteroidetes)和未培养菌(uncultured bacterium)在文库中所占比例最大,分别为27.91%、13.95%和12.79%;其次是浮霉状菌(Planctomycetes)、酸杆菌(Acidobacteria)和绿弯菌(Chloroflexi),在文库中所占比例分别为9.3%、9.3%和9.3%;硝化螺旋菌(Nitrospirae)、裸藻门(Euglenozoa)、芽单胞菌(Gemmatimonadetes)和放线菌(Actinobacteria)所占比例相对较少,分别为6.98%、8.14%、1.16%和1.16%。两池细菌的主要类群相似,但菌属及比例有所差异,变形菌是系统中的主要脱氮菌属。展开更多
Under a constant pressure, a pilot-plant test was conducted through the use of anoxic-aerobic membrane bioreactor (AO-MBR), and this test operated steadily for 251 days. During the experiment, there were a total of ...Under a constant pressure, a pilot-plant test was conducted through the use of anoxic-aerobic membrane bioreactor (AO-MBR), and this test operated steadily for 251 days. During the experiment, there were a total of four membrane cleaning processes, for the 90th day, the 150th day, the 210th day and the 240th day, respectively (The cleaning cycle was 90 days, 60 days, 60 days and 30 days, respectively). From the initial 33.26 L/m^2.b dropped to 20.03 L/m^2.h after the fourth membrane cleaning, membrane flux reduced to 60.22% of the initial flux. During the 180 thd-210 thd of the experiment, the powdered activated carbon (PAC), the segment size of which is 80-100, was put into anoxic reactor. Membrane flux decreased from 16.02 L/m^2·h to 15.29 L/m^2·h, and then rose to 15.65L/m^2·h. The dosing of PAC had a significant effect on the maintenance of a high membrane flux and extending running time. Before several membrane cleanings, a wire of membrane was intercepted from membrane module. It was found that the membrane surface sediments seemed to the inorganic colloid formed by Fe^2+, Ca^2+ and biofilm formed by some micro-organisms after the membrane surface pollutants were analyzed preliminarily with scanning electron microscopy (SEM).展开更多
文摘Under a constant pressure, a pilot-plant test was conducted through the use of anoxic-aerobic membrane bioreactor (AO-MBR), and this test operated steadily for 251 days. During the experiment, there were a total of four membrane cleaning processes, for the 90th day, the 150th day, the 210th day and the 240th day, respectively (The cleaning cycle was 90 days, 60 days, 60 days and 30 days, respectively). From the initial 33.26 L/m^2.b dropped to 20.03 L/m^2.h after the fourth membrane cleaning, membrane flux reduced to 60.22% of the initial flux. During the 180 thd-210 thd of the experiment, the powdered activated carbon (PAC), the segment size of which is 80-100, was put into anoxic reactor. Membrane flux decreased from 16.02 L/m^2·h to 15.29 L/m^2·h, and then rose to 15.65L/m^2·h. The dosing of PAC had a significant effect on the maintenance of a high membrane flux and extending running time. Before several membrane cleanings, a wire of membrane was intercepted from membrane module. It was found that the membrane surface sediments seemed to the inorganic colloid formed by Fe^2+, Ca^2+ and biofilm formed by some micro-organisms after the membrane surface pollutants were analyzed preliminarily with scanning electron microscopy (SEM).