Investigating and modeling fluid flow in fractured aquifers is a challenge. This study presents the results of a series of packer tests conducted in a fractured aquifer in Freiberg, Germany, where gneiss is the domina...Investigating and modeling fluid flow in fractured aquifers is a challenge. This study presents the results of a series of packer tests conducted in a fractured aquifer in Freiberg, Germany, where gneiss is the dominant rock type. Two methods were applied to acquire hydraulic properties from the packer tests: analytical and numerical modeling. MLU (Multi-Layer Unsteady state) for Windows is the analytical model that was applied. ANSYS-FLOTRAN was used to build a two-dimensional numerical model of the geometry of the layered aquifer. A reasonable match between experimental data and simulated data was achieved with the 2D numerical model while the solution from the analytical model revealed significant deviations with respect to direction.展开更多
基金supported by the Department of Hydrogeology at TU Freiberg.
文摘Investigating and modeling fluid flow in fractured aquifers is a challenge. This study presents the results of a series of packer tests conducted in a fractured aquifer in Freiberg, Germany, where gneiss is the dominant rock type. Two methods were applied to acquire hydraulic properties from the packer tests: analytical and numerical modeling. MLU (Multi-Layer Unsteady state) for Windows is the analytical model that was applied. ANSYS-FLOTRAN was used to build a two-dimensional numerical model of the geometry of the layered aquifer. A reasonable match between experimental data and simulated data was achieved with the 2D numerical model while the solution from the analytical model revealed significant deviations with respect to direction.