期刊文献+
共找到87篇文章
< 1 2 5 >
每页显示 20 50 100
低阻油层形成机理及测井识别方法研究 被引量:45
1
作者 王赛英 赵冠军 +2 位作者 张萍 邓永红 陈德林 《特种油气藏》 CAS CSCD 2010年第4期10-14,120,共5页
随着油气勘探程度的不断深化,非常规油气藏在油气勘探中不断被发现,在实际的勘探过程中低阻油层的储量和产量都在不断增加。低阻油层在沉积环境、岩性、亲水性、黏土性质、孔隙结构等方面都具有自身特征。由其表现出的特征反推其成因机... 随着油气勘探程度的不断深化,非常规油气藏在油气勘探中不断被发现,在实际的勘探过程中低阻油层的储量和产量都在不断增加。低阻油层在沉积环境、岩性、亲水性、黏土性质、孔隙结构等方面都具有自身特征。由其表现出的特征反推其成因机理,推知低阻油层主要成因是高矿化度地层水、高黏土含量、微裂缝发育、油层薄等。根据成因机理可以预测低阻油层,在低阻油层的勘探过程中,主要任务就是识别低阻油层。由于低阻油层的勘探多是在老油田中进行,测井资料比较丰富,因此基于测井资料的低阻油层识别显得尤为重要,目前最常用的是重叠法、自然电位偏移法、"双水模型"法、人工神经网络法等技术方法。由于低阻油层的特殊性,通常情况下仅靠某一种方法、一种资料不能将其识别出来,应广泛结合地震、录井、试井以及地质等各方面的资料进行综合识别。 展开更多
关键词 低阻油层 测井解释 形成机理 人工神经网络
下载PDF
基于支持向量机的纱线质量预测 被引量:16
2
作者 项前 杨建国 程隆棣 《纺织学报》 EI CAS CSCD 北大核心 2008年第4期43-46,共4页
针对现有的优化纺纱工艺过程质量预测模型尚无法满足实际生产需要的问题,提出了纱线质量预测的支持向量机方法,并利用网格搜索对该模型的参数进行优化。经毛纱工艺实践表明,在小样本和"噪声"数据环境下,支持向量机模型仍能保... 针对现有的优化纺纱工艺过程质量预测模型尚无法满足实际生产需要的问题,提出了纱线质量预测的支持向量机方法,并利用网格搜索对该模型的参数进行优化。经毛纱工艺实践表明,在小样本和"噪声"数据环境下,支持向量机模型仍能保持一定的预测精度,同人工神经网络模型相比,更适用于真实纺纱生产过程中的工艺控制。 展开更多
关键词 支持向量机 统计学习 预测模型 人工神经网络 纱线质量
下载PDF
基于双重人工神经网络的XP-70绝缘子串污闪概率模型的建立 被引量:8
3
作者 徐建源 滕云 +1 位作者 林莘 齐伟夫 《电工技术学报》 EI CSCD 北大核心 2008年第12期23-27,47,共6页
针对高压电网运行中绝缘子污闪风险概率评估的困难,建立了XP?70(9片串)绝缘子的基于双重人工神经网络的污闪概率模型。污闪概率模型比较准确地反映了环境因素、等值附盐密度(ESDD)、污秽闪络电压水平及污秽闪络概率之间的非线性关系,建... 针对高压电网运行中绝缘子污闪风险概率评估的困难,建立了XP?70(9片串)绝缘子的基于双重人工神经网络的污闪概率模型。污闪概率模型比较准确地反映了环境因素、等值附盐密度(ESDD)、污秽闪络电压水平及污秽闪络概率之间的非线性关系,建立了包括估计绝缘子的自然积污污秽度、预测绝缘子污秽闪络电压值及根据前两个模型的输出结果计算出该绝缘子污闪的风险概率大小的三个子模型。进行了针对三个子模型的一系列试验,试验结果表明,该预测模型的预测结果基本满足工程需要,具有实用价值。 展开更多
关键词 绝缘子 人工污秽试验 污秽闪络 人工神经网络
下载PDF
机器学习算法用于公安一线拉曼实际样本采样学习及其准确度比较 被引量:8
4
作者 李志豪 沈俊 +1 位作者 边瑞华 郑健 《光谱学与光谱分析》 SCIE EI CAS CSCD 北大核心 2019年第7期2171-2175,共5页
拉曼光谱设备在公安一线中正逐渐得到普及,主要用于检测易燃易爆及易制毒化学品。但在实际应用中,一线人员不会对拉曼设备进行非常准确的使用和操作,不具备专业知识条件的工作人员无法完全按照最佳条件进行检测,经常会发生离焦、偏移、... 拉曼光谱设备在公安一线中正逐渐得到普及,主要用于检测易燃易爆及易制毒化学品。但在实际应用中,一线人员不会对拉曼设备进行非常准确的使用和操作,不具备专业知识条件的工作人员无法完全按照最佳条件进行检测,经常会发生离焦、偏移、采样时间过短等一系列问题,而检测结果也不可能完全符合标准测试库的算法,给最终结果比对造成非常大的影响。利用五种主流机器学习算法对实际检查、办案过程中采集到的原始数据进行学习分类,通过比较相应的准确度将最佳算法用于改善一线执法、检查过程中拉曼光谱设备的准确性。采集的数据均来自于公安部第三研究所自行研制的EVA3000型拉曼光谱仪,该光谱仪目前已在全国各省、市、地、县进行了一定的配备,一线检测人员会定期将采集的原始数据回传到EVA3000的后台管理系统。通过该管理系统,在线收集实际检查过程中产生的原始数据,以两类易制毒化学品和易燃易爆化学品为例,随机抽取已定性判定的苯乙酸、二氯甲烷、麻黄碱和硝基苯各40例共计160例,并分别利用决策树、随机森林、AdaBoost、支持向量机和人工神经网络算法各进行40,60,100,150,200,300和500次的交叉训练、预测、求取平均准确度。从实验结果可以看出,在五种学习算法中,对于实际样本的预测准确度排序大致为随机森林≈AdaBoost>决策树>SVM>人工神经网络。实际测试的结果与实验过程中的平均预测准确度大体一致。其中随机森林与AdaBoost的准确度相近,其原因在于两者的算法本质都是不断构建新的训练数据集并提高对于错误样本在下次学习中的权重,而SVM和人工神经网络算法的本质都是基于感知器的算法。可见目前几种主流学习算法中,采用自举汇聚(bootstrap aggregating)方式的算法更适应于对实际样本的采样学习,其准确度也较高。在下� 展开更多
关键词 拉曼光谱 易燃易爆及易制毒化学品 决策树 随机森林 ADABOOST 神经网络 支持向量机 公安一线
下载PDF
Modified imperialist competitive algorithm-based neural network to determine shear strength of concrete beams reinforced with FRP 被引量:5
5
作者 Amir HASANZADE-INALLU Panam ZARFAM Mehdi NIKOO 《Journal of Central South University》 SCIE EI CAS CSCD 2019年第11期3156-3174,共19页
Fiber reinforced polymers (FRPs), unlike steel, are corrosion-resistant and therefore are of interest;however, their use is hindered because their brittle shear is formulated in most specifications using limited data ... Fiber reinforced polymers (FRPs), unlike steel, are corrosion-resistant and therefore are of interest;however, their use is hindered because their brittle shear is formulated in most specifications using limited data available at the time. We aimed to predict the shear strength of concrete beams reinforced with FRP bars and without stirrups by compiling a relatively large database of 198 previously published test results (available in appendix). To model shear strength, an artificial neural network was trained by an ensemble of Levenberg-Marquardt and imperialist competitive algorithms. The results suggested superior accuracy of model compared to equations available in specifications and literature. 展开更多
关键词 concrete shear strength fiber reinforced polymer (FRP) artificial neural networks (anns) Levenberg-Marquardt algorithm imperialist competitive algorithm (ICA)
下载PDF
Innovative Artificial Neural Networks-Based Decision Support System for Heart Diseases Diagnosis 被引量:4
6
作者 Sameh Ghwanmeh Adel Mohammad Ali Al-Ibrahim 《Journal of Intelligent Learning Systems and Applications》 2013年第3期176-183,共8页
Heart diagnosis is not always possible at every medical center, especially in the rural areas where less support and care, due to lack of advanced heart diagnosis equipment. Also, physician intuition and experience ar... Heart diagnosis is not always possible at every medical center, especially in the rural areas where less support and care, due to lack of advanced heart diagnosis equipment. Also, physician intuition and experience are not always sufficient to achieve high quality medical procedures results. Therefore, medical errors and undesirable results are reasons for a need for unconventional computer-based diagnosis systems, which in turns reduce medical fatal errors, increasing the patient safety and save lives. The proposed solution, which is based on an Artificial Neural Networks (ANNs), provides a decision support system to identify three main heart diseases: mitral stenosis, aortic stenosis and ventricular septal defect. Furthermore, the system deals with an encouraging opportunity to develop an operational screening and testing device for heart disease diagnosis and can deliver great assistance for clinicians to make advanced heart diagnosis. Using real medical data, series of experiments have been conducted to examine the performance and accuracy of the proposed solution. Compared results revealed that the system performance and accuracy are acceptable, with a heart diseases classification accuracy of 92%. 展开更多
关键词 HEART Disease DIAGNOSIS Classification Accuracy anns DECISION Support System Knowledge Base
下载PDF
Malware Detection Using Deep Learning
7
作者 Achi Harrisson Thiziers Koné Tiémoman +1 位作者 N’guessan Behou Gérard Traoré Tiémoko Qouddouss Kabir 《Open Journal of Applied Sciences》 2023年第12期2480-2491,共12页
Malware represents a real threat to information systems, because of the damage it causes. This threat is growing today, as these programs take on more complex forms. This means they escape traditional malware detectio... Malware represents a real threat to information systems, because of the damage it causes. This threat is growing today, as these programs take on more complex forms. This means they escape traditional malware detection methods. Hence the need for artificial intelligence, more specifically Deep Learning, which could detect malware more effectively. In this article, we’ve proposed a model for malware detection using artificial neural networks. Our approach used data from the characteristics of machines, particularly computers, to train our Deep Learning algorithm. This model demonstrated an accuracy of around 83% in predicting the presence of malware on a machine. Thus, the use of artificial neural networks for malware detection has shown his ability to assimilate complex, non-linear patterns from data. 展开更多
关键词 Neural Network anns Malicious Code Malware Analysis Artificial Intelligence
下载PDF
拔尖创新博士生的识别、选拔与培养——基于优秀学位论文作者群体画像研究
8
作者 黄维海 李树岳 《教育发展研究》 北大核心 2024年第3期38-45,共8页
通过人工神经网络技术识别优秀博士学位论文作者的共同、典型特征构建群体画像模型,是甄选具有拔尖创新潜质人才、服务有效教与学的新手段。基于1500份毕业博士样本,本研究构建出理工农医和人文社科优秀博士学位论文作者的群体画像,党... 通过人工神经网络技术识别优秀博士学位论文作者的共同、典型特征构建群体画像模型,是甄选具有拔尖创新潜质人才、服务有效教与学的新手段。基于1500份毕业博士样本,本研究构建出理工农医和人文社科优秀博士学位论文作者的群体画像,党员身份、父母高学历、高学习投入、高能力素养、学科竞赛获奖或获得综合性奖励是两类群体画像的共有特征,体育锻炼习惯、前置学校双一流、实习实践的经历是人文社科类优秀学位论文作者画像的独有特征,较好的家庭经济水平、高课堂投入、高协作解决问题能力和学习能力则是理工农医类优秀学位论文作者画像的独有特征。基于画像模型的发现,选拔优秀博士生需要认识到党员身份、获奖的信号作用和家庭资本、高学习投入的支持作用,培养中要重视非认知能力与认知能力的统整融合,将课堂开设在广阔的大地上加强实践锻炼。 展开更多
关键词 优秀博士学位论文 群体画像 拔尖创新人才培养 人工神经网络
原文传递
人工神经网络和专家系统在污水生物处理系统中的应用 被引量:4
9
作者 高景峰 彭永臻 王淑莹 《环境污染与防治》 CAS CSCD 北大核心 2004年第1期31-32,38,共3页
对近年来国内外污水生物处理系统中人工神经网络和专家系统的应用进行了简要的回顾。分析了废水生物处理工艺难于控制的原因及人工神经网络和专家系统的结构和特点。结果表明 ,国外智能控制发展迅速 ,并且应用领域遍及污水生物处理的各... 对近年来国内外污水生物处理系统中人工神经网络和专家系统的应用进行了简要的回顾。分析了废水生物处理工艺难于控制的原因及人工神经网络和专家系统的结构和特点。结果表明 ,国外智能控制发展迅速 ,并且应用领域遍及污水生物处理的各个方面 ,国内尚处于起步阶段。 展开更多
关键词 人工神经网络 专家系统 污水生物处理系统 anns 信息处理网络结构 智能控制 模糊控制
下载PDF
ANFIS and ANNs model for prediction of moisture diffusivity and specific energy consumption potato,garlic and cantaloupe drying under convective hot air dryer 被引量:4
10
作者 Mohammad Kaveh Vali Rasooli Sharabiani +3 位作者 Reza Amiri Chayjan Ebrahim Taghinezhad Yousef Abbaspour-Gilandeh Iman Golpour 《Information Processing in Agriculture》 EI 2018年第3期372-387,共16页
The main purpose of this study was to develop and apply an adaptive neuro-fuzzy inference system(ANFIS)and Artificial Neural Networks(ANNs)model for predicting the drying characteristics of potato,garlic and cantaloup... The main purpose of this study was to develop and apply an adaptive neuro-fuzzy inference system(ANFIS)and Artificial Neural Networks(ANNs)model for predicting the drying characteristics of potato,garlic and cantaloupe at convective hot air dryer.Drying experiments were conducted at the air temperatures of 40,50,60 and 70C and the air speeds of 0.5,1 and l.5 m/s.Drying properties were including kinetic drying,effective moisture diffusivity(Deff)and specific energy consumption(SEC).The highest value of Deff obtained 9.76×10^-9,0.13×10^-9 and 9.97×10^-10 m^2/s for potato,garlic,and cantaloupe,respectively.The lowest value of SEC for potato,garlic,and cantaloupe were calculated 1.94105,4.52105 and 2.12105 kJ/kg,respectively.Results revealed that the ANFIS model had the high ability to predict the Deff(R^2=0.9900),SEC(R^2=0.9917),moisture ratio(R^2=0.9974)and drying rate(R^2=0.9901)during drying.So ANFIS method had the high ability to evaluate all output as compared to ANNs method. 展开更多
关键词 Convective hot air drying Drying kinetics Effective moisture diffusivity ANFIS anns
原文传递
A MULTISCALE MODELING APPROACH INCORPORATING ARIMA AND ANNS FOR FINANCIAL MARKET VOLATILITY FORECASTING 被引量:4
11
作者 XIAO Yi XIAO Jin +1 位作者 LIU John WANG Shouyang 《Journal of Systems Science & Complexity》 SCIE EI CSCD 2014年第1期225-236,共12页
The financial market volatility forecasting is regarded as a challenging task because of irreg ularity, high fluctuation, and noise. In this study, a multiscale ensemble forecasting model is proposed. The original fin... The financial market volatility forecasting is regarded as a challenging task because of irreg ularity, high fluctuation, and noise. In this study, a multiscale ensemble forecasting model is proposed. The original financial series are decomposed firstly different scale components (i.e., approximation and details) using the maximum overlap discrete wavelet transform (MODWT). The approximation is pre- dicted by a hybrid forecasting model that combines autoregressive integrated moving average (ARIMA) with feedforward neural network (FNN). ARIMA model is used to generate a linear forecast, and then FNN is developed as a tool for nonlinear pattern recognition to correct the estimation error in ARIMA forecast. Moreover, details are predicted by Elman neural networks. Three weekly exchange rates data are collected to establish and validate the forecasting model. Empirical results demonstrate consistent better performance of the proposed approach. 展开更多
关键词 ARIMA model financial market volatility forecasting multiscale modeling approach neural network wavelet transform.
原文传递
基于双电源二次激励法的湿型砂组分快速预测用网络模型的研究 被引量:3
12
作者 李大勇 许雄飞 +1 位作者 邱宪波 李庆春 《电机与控制学报》 EI CSCD 1999年第3期192-195,共4页
双电源二次激励法是本文提出的一种利用温型粘土砂导电特性参数,快速预测其组分的新方法。利用人工神经网络(ANNs)研究型砂有效粘土含量和含水量与型砂交流电导率、直流电导率、直流电导率变化率之间的复杂关系,通过BP算法建... 双电源二次激励法是本文提出的一种利用温型粘土砂导电特性参数,快速预测其组分的新方法。利用人工神经网络(ANNs)研究型砂有效粘土含量和含水量与型砂交流电导率、直流电导率、直流电导率变化率之间的复杂关系,通过BP算法建立了信息参数与预测参数之间的非线性映照关系。实验结果表明,双电源二次激励法与人工神经网络相结合,可以实现型砂有效粘土含量和含水量的快速在线预测。 展开更多
关键词 铸造 型砂组分 预测 人工神经网络 二次激励法
下载PDF
用于铸铁力学性能快速预测的人工神经网络 被引量:3
13
作者 夏善木 李大勇 《应用科学学报》 CAS CSCD 2002年第3期309-312,共4页
对人工神经网络用于铸铁力学性能预测进行了系统的研究 ,并利用 Matlab建立了一个基于热分析的预测网络 ,同时采用了多种有效的方法以提高网络的性能 .测试结果表明网络具有良好的泛化能力 。
关键词 铸铁 力学性能 性能预测 人工神经网络 热分析 网络模型 抗拉强度 硬度
下载PDF
Robustness Assessment and Adaptive FDI for Car Engine 被引量:1
14
作者 Mahavir Singh Sangha J.Barry Gomm 《International Journal of Automation and computing》 EI 2008年第2期109-118,共10页
A new on-line fault detection and isolation (FDI) scheme proposed for engines using an adaptive neural network classifier is evaluated for a wide range of operational modes to check the robustness of the scheme in t... A new on-line fault detection and isolation (FDI) scheme proposed for engines using an adaptive neural network classifier is evaluated for a wide range of operational modes to check the robustness of the scheme in this paper. The neural classifier is adaptive to cope with the significant parameter uncertainty, disturbances, and environment changes. The developed scheme is capable of diagnosing faults in on-line mode and the FDI for the closed-loop system with can be directly implemented in an on-board crankshaft speed feedback is investigated by diagnosis system (hardware). The robustness of testing it for a wide range of operational modes including robustness against fixed and sinusoidal throttle angle inputs, change in load, change in an engine parameter, and all these changes occurring at the same time. The evaluations are performed using a mean value engine model (MVEM), which is a widely used benchmark model for engine control system and FDI system design. The simulation results confirm the robustness of the proposed method for various uncertainties and disturbances. 展开更多
关键词 On-board fault diagnosis automotive engines adaptive neural networks anns fault classification robustness assessment
下载PDF
Study of Polluted Insulator Flashover Forecasting Based on Nonlinear Time Series Analysis 被引量:3
15
作者 XU Jian-yuan TENG Yun LIN Xin 《高电压技术》 EI CAS CSCD 北大核心 2008年第12期2615-2620,共6页
To solve the problem of the flashover forecasting of contaminated or polluted insulator,a flashover forecasting model of contaminated insulators based on nonlinear time series analysis is proposed in the paper.The ESD... To solve the problem of the flashover forecasting of contaminated or polluted insulator,a flashover forecasting model of contaminated insulators based on nonlinear time series analysis is proposed in the paper.The ESDD is the key of flashover on polluted insulator.The ESDD value of insulator can be forecasted by the method of nonlinear time series analysis of the ESDD time series and a forecasting model of polluted insulator flashover is proposed in the paper.The forecasting model consists of two artificial neural networks that reflect relationship of environment,ESDD and flashover probability.The first is used to estimate the ESDD time series of insulator and the second is employed to calculate the probability of the flashover.A series of artificial pollution tests show that the results of the forecasting model is acceptable. 展开更多
关键词 非线性 时间序列分析 绝缘子 污闪 预测
下载PDF
Artificial Neural Networks for Event Based Rainfall-Runoff Modeling
16
作者 Archana Sarkar Rakesh Kumar 《Journal of Water Resource and Protection》 2012年第10期891-897,共7页
The Artificial Neural Network (ANN) approach has been successfully used in many hydrological studies especially the rainfall-runoff modeling using continuous data. The present study examines its applicability to model... The Artificial Neural Network (ANN) approach has been successfully used in many hydrological studies especially the rainfall-runoff modeling using continuous data. The present study examines its applicability to model the event-based rainfall-runoff process. A case study has been done for Ajay river basin to develop event-based rainfall-runoff model for the basin to simulate the hourly runoff at Sarath gauging site. The results demonstrate that ANN models are able to provide a good representation of an event-based rainfall-runoff process. The two important parameters, when predicting a flood hydrograph, are the magnitude of the peak discharge and the time to peak discharge. The developed ANN models have been able to predict this information with great accuracy. This shows that ANNs can be very efficient in modeling an event-based rainfall-runoff process for determining the peak discharge and time to the peak discharge very accurately. This is important in water resources design and management applications, where peak discharge and time to peak discharge are important input 展开更多
关键词 Artificial NEURAL Networks (anns) EVENT Based RAINFALL-RUNOFF Process Error BACK Propagation NEURAL Power
下载PDF
Neural Networks Studies——QSAR for O-ethyl-O-aryl-N-isopropyl-phosphoramidothioates
17
作者 顾立群 王磊光 +1 位作者 黄五群 杨华铮 《Chinese Science Bulletin》 SCIE EI CAS 1994年第8期632-636,共5页
O-ethyl-O-aryl-N-isopropyl-phosphoramidothioates have relatively high herbicidal ac-tivity. The exact and comprehensive QSAN study is the key to finding new compoundswith high activity. Artificial neural networks (ANN... O-ethyl-O-aryl-N-isopropyl-phosphoramidothioates have relatively high herbicidal ac-tivity. The exact and comprehensive QSAN study is the key to finding new compoundswith high activity. Artificial neural networks (ANNs) are a newly emerging field ofinformation processing technology. As ANNs can be taught complex nonlinearinput-output transformations and have the ability of adaptive learning, resistance tonoise and fault tolerance, they can solve the pattern recognition and funtionalmapping problems. 展开更多
关键词 anns QSAR phosphoramidothioate.
原文传递
Computing the Pressure Drop of Nanofluid Turbulent Flows in a Pipe Using an Artificial Neural Network Model
18
作者 Mahmoud S. Youssef Ayman A. Aly El-Shafei B. Zeidan 《Open Journal of Fluid Dynamics》 2012年第4期130-136,共7页
In this study, an Artificial Neural Network (ANN) model to predict the pressure drop of turbulent flow of titanium dioxide-water (TiO2-water) is presented. Experimental measurements of TiO2-water under fully developed... In this study, an Artificial Neural Network (ANN) model to predict the pressure drop of turbulent flow of titanium dioxide-water (TiO2-water) is presented. Experimental measurements of TiO2-water under fully developed turbulent flow regime in pipe with different particle volumetric concentrations, nanoparticle diameters, nanofluid temperatures and Reynolds numbers have been used to construct the proposed ANN model. The ANN model was then tested by comparing the predicted results with the measured values at different experimental conditions. The predicted values of pressure drop agreed almost completely with the measured values. 展开更多
关键词 Artificial NEURAL Networks (anns) TURBULENT Flow Nanofluids Pressure DROP
下载PDF
基于多种人工智能技术集成的电力变压器故障诊断研究
19
作者 黄楠楠 《软件》 2020年第5期221-224,共4页
这篇文章会针对许多个AI技术集合而成的电力变压器出现问题从而开展判断确诊的有关研究。这篇文章涉及的问题归纳了演化算法、Fuzzy Logic、ANNs、案例推导等等几种AI技术的独到之处,填补了独个AI技术的弱点,减少了数据库范本的信息差别... 这篇文章会针对许多个AI技术集合而成的电力变压器出现问题从而开展判断确诊的有关研究。这篇文章涉及的问题归纳了演化算法、Fuzzy Logic、ANNs、案例推导等等几种AI技术的独到之处,填补了独个AI技术的弱点,减少了数据库范本的信息差别,提高了信息初始权值,很大程度上升了ANNs的约束性。ANNs的网络结构以及测试范本经过很多的测算度量而后挑选认定,并经过在于案例推导的专业软件检测到了相对优等的资源范例并总结了判断确诊的定论。确诊成果显示,这个诊断手段可以比较精确判断区别出电力transf.(T)的问题所在。 展开更多
关键词 多种AI技术 anns 问题诊断研究
下载PDF
Using Feed Forward BPNN for Forecasting All Share Price Index
20
作者 Donglin Chen Dissanayaka M. K. N. Seneviratna 《Journal of Data Analysis and Information Processing》 2014年第4期87-94,共8页
Use of artificial neural networks has become a significant and an emerging research method due to its capability of capturing nonlinear behavior instead of conventional time series methods. Among them, feed forward ba... Use of artificial neural networks has become a significant and an emerging research method due to its capability of capturing nonlinear behavior instead of conventional time series methods. Among them, feed forward back propagation neural network (BPNN) is the widely used network topology for forecasting stock prices indices. In this study, we attempted to find the best network topology for one step ahead forecasting of All Share Price Index (ASPI), Colombo Stock Exchange (CSE) by employing feed forward BPNN. The daily data including ASPI, All Share Total Return Index (ASTRI), Market Price Earnings Ratio (PER), and Market Price to Book Value (PBV) were collected from CSE over the period from January 2nd 2012 to March 20th 2014. The experiment is implemented by prioritizing the number of inputs, learning rate, number of hidden layer neurons, and the number of training sessions. Eight models were selected on basis of input data and the number of training sessions. Then the best model was used for forecasting next trading day ASPI value. Empirical result reveals that the proposed model can be used as an approximation method to obtain next day value. In addition, it showed that the number of inputs, number of hidden layer neurons and the training times are significant factors that can be affected to the accuracy of forecast value. 展开更多
关键词 Artificial Neural Networks (anns) FEED FORWARD Back Propagation (BP) STOCK Index Forecasting
下载PDF
上一页 1 2 5 下一页 到第
使用帮助 返回顶部