Fiber reinforced polymers (FRPs), unlike steel, are corrosion-resistant and therefore are of interest;however, their use is hindered because their brittle shear is formulated in most specifications using limited data ...Fiber reinforced polymers (FRPs), unlike steel, are corrosion-resistant and therefore are of interest;however, their use is hindered because their brittle shear is formulated in most specifications using limited data available at the time. We aimed to predict the shear strength of concrete beams reinforced with FRP bars and without stirrups by compiling a relatively large database of 198 previously published test results (available in appendix). To model shear strength, an artificial neural network was trained by an ensemble of Levenberg-Marquardt and imperialist competitive algorithms. The results suggested superior accuracy of model compared to equations available in specifications and literature.展开更多
Heart diagnosis is not always possible at every medical center, especially in the rural areas where less support and care, due to lack of advanced heart diagnosis equipment. Also, physician intuition and experience ar...Heart diagnosis is not always possible at every medical center, especially in the rural areas where less support and care, due to lack of advanced heart diagnosis equipment. Also, physician intuition and experience are not always sufficient to achieve high quality medical procedures results. Therefore, medical errors and undesirable results are reasons for a need for unconventional computer-based diagnosis systems, which in turns reduce medical fatal errors, increasing the patient safety and save lives. The proposed solution, which is based on an Artificial Neural Networks (ANNs), provides a decision support system to identify three main heart diseases: mitral stenosis, aortic stenosis and ventricular septal defect. Furthermore, the system deals with an encouraging opportunity to develop an operational screening and testing device for heart disease diagnosis and can deliver great assistance for clinicians to make advanced heart diagnosis. Using real medical data, series of experiments have been conducted to examine the performance and accuracy of the proposed solution. Compared results revealed that the system performance and accuracy are acceptable, with a heart diseases classification accuracy of 92%.展开更多
Malware represents a real threat to information systems, because of the damage it causes. This threat is growing today, as these programs take on more complex forms. This means they escape traditional malware detectio...Malware represents a real threat to information systems, because of the damage it causes. This threat is growing today, as these programs take on more complex forms. This means they escape traditional malware detection methods. Hence the need for artificial intelligence, more specifically Deep Learning, which could detect malware more effectively. In this article, we’ve proposed a model for malware detection using artificial neural networks. Our approach used data from the characteristics of machines, particularly computers, to train our Deep Learning algorithm. This model demonstrated an accuracy of around 83% in predicting the presence of malware on a machine. Thus, the use of artificial neural networks for malware detection has shown his ability to assimilate complex, non-linear patterns from data.展开更多
The main purpose of this study was to develop and apply an adaptive neuro-fuzzy inference system(ANFIS)and Artificial Neural Networks(ANNs)model for predicting the drying characteristics of potato,garlic and cantaloup...The main purpose of this study was to develop and apply an adaptive neuro-fuzzy inference system(ANFIS)and Artificial Neural Networks(ANNs)model for predicting the drying characteristics of potato,garlic and cantaloupe at convective hot air dryer.Drying experiments were conducted at the air temperatures of 40,50,60 and 70C and the air speeds of 0.5,1 and l.5 m/s.Drying properties were including kinetic drying,effective moisture diffusivity(Deff)and specific energy consumption(SEC).The highest value of Deff obtained 9.76×10^-9,0.13×10^-9 and 9.97×10^-10 m^2/s for potato,garlic,and cantaloupe,respectively.The lowest value of SEC for potato,garlic,and cantaloupe were calculated 1.94105,4.52105 and 2.12105 kJ/kg,respectively.Results revealed that the ANFIS model had the high ability to predict the Deff(R^2=0.9900),SEC(R^2=0.9917),moisture ratio(R^2=0.9974)and drying rate(R^2=0.9901)during drying.So ANFIS method had the high ability to evaluate all output as compared to ANNs method.展开更多
The financial market volatility forecasting is regarded as a challenging task because of irreg ularity, high fluctuation, and noise. In this study, a multiscale ensemble forecasting model is proposed. The original fin...The financial market volatility forecasting is regarded as a challenging task because of irreg ularity, high fluctuation, and noise. In this study, a multiscale ensemble forecasting model is proposed. The original financial series are decomposed firstly different scale components (i.e., approximation and details) using the maximum overlap discrete wavelet transform (MODWT). The approximation is pre- dicted by a hybrid forecasting model that combines autoregressive integrated moving average (ARIMA) with feedforward neural network (FNN). ARIMA model is used to generate a linear forecast, and then FNN is developed as a tool for nonlinear pattern recognition to correct the estimation error in ARIMA forecast. Moreover, details are predicted by Elman neural networks. Three weekly exchange rates data are collected to establish and validate the forecasting model. Empirical results demonstrate consistent better performance of the proposed approach.展开更多
A new on-line fault detection and isolation (FDI) scheme proposed for engines using an adaptive neural network classifier is evaluated for a wide range of operational modes to check the robustness of the scheme in t...A new on-line fault detection and isolation (FDI) scheme proposed for engines using an adaptive neural network classifier is evaluated for a wide range of operational modes to check the robustness of the scheme in this paper. The neural classifier is adaptive to cope with the significant parameter uncertainty, disturbances, and environment changes. The developed scheme is capable of diagnosing faults in on-line mode and the FDI for the closed-loop system with can be directly implemented in an on-board crankshaft speed feedback is investigated by diagnosis system (hardware). The robustness of testing it for a wide range of operational modes including robustness against fixed and sinusoidal throttle angle inputs, change in load, change in an engine parameter, and all these changes occurring at the same time. The evaluations are performed using a mean value engine model (MVEM), which is a widely used benchmark model for engine control system and FDI system design. The simulation results confirm the robustness of the proposed method for various uncertainties and disturbances.展开更多
To solve the problem of the flashover forecasting of contaminated or polluted insulator,a flashover forecasting model of contaminated insulators based on nonlinear time series analysis is proposed in the paper.The ESD...To solve the problem of the flashover forecasting of contaminated or polluted insulator,a flashover forecasting model of contaminated insulators based on nonlinear time series analysis is proposed in the paper.The ESDD is the key of flashover on polluted insulator.The ESDD value of insulator can be forecasted by the method of nonlinear time series analysis of the ESDD time series and a forecasting model of polluted insulator flashover is proposed in the paper.The forecasting model consists of two artificial neural networks that reflect relationship of environment,ESDD and flashover probability.The first is used to estimate the ESDD time series of insulator and the second is employed to calculate the probability of the flashover.A series of artificial pollution tests show that the results of the forecasting model is acceptable.展开更多
The Artificial Neural Network (ANN) approach has been successfully used in many hydrological studies especially the rainfall-runoff modeling using continuous data. The present study examines its applicability to model...The Artificial Neural Network (ANN) approach has been successfully used in many hydrological studies especially the rainfall-runoff modeling using continuous data. The present study examines its applicability to model the event-based rainfall-runoff process. A case study has been done for Ajay river basin to develop event-based rainfall-runoff model for the basin to simulate the hourly runoff at Sarath gauging site. The results demonstrate that ANN models are able to provide a good representation of an event-based rainfall-runoff process. The two important parameters, when predicting a flood hydrograph, are the magnitude of the peak discharge and the time to peak discharge. The developed ANN models have been able to predict this information with great accuracy. This shows that ANNs can be very efficient in modeling an event-based rainfall-runoff process for determining the peak discharge and time to the peak discharge very accurately. This is important in water resources design and management applications, where peak discharge and time to peak discharge are important input展开更多
O-ethyl-O-aryl-N-isopropyl-phosphoramidothioates have relatively high herbicidal ac-tivity. The exact and comprehensive QSAN study is the key to finding new compoundswith high activity. Artificial neural networks (ANN...O-ethyl-O-aryl-N-isopropyl-phosphoramidothioates have relatively high herbicidal ac-tivity. The exact and comprehensive QSAN study is the key to finding new compoundswith high activity. Artificial neural networks (ANNs) are a newly emerging field ofinformation processing technology. As ANNs can be taught complex nonlinearinput-output transformations and have the ability of adaptive learning, resistance tonoise and fault tolerance, they can solve the pattern recognition and funtionalmapping problems.展开更多
In this study, an Artificial Neural Network (ANN) model to predict the pressure drop of turbulent flow of titanium dioxide-water (TiO2-water) is presented. Experimental measurements of TiO2-water under fully developed...In this study, an Artificial Neural Network (ANN) model to predict the pressure drop of turbulent flow of titanium dioxide-water (TiO2-water) is presented. Experimental measurements of TiO2-water under fully developed turbulent flow regime in pipe with different particle volumetric concentrations, nanoparticle diameters, nanofluid temperatures and Reynolds numbers have been used to construct the proposed ANN model. The ANN model was then tested by comparing the predicted results with the measured values at different experimental conditions. The predicted values of pressure drop agreed almost completely with the measured values.展开更多
Use of artificial neural networks has become a significant and an emerging research method due to its capability of capturing nonlinear behavior instead of conventional time series methods. Among them, feed forward ba...Use of artificial neural networks has become a significant and an emerging research method due to its capability of capturing nonlinear behavior instead of conventional time series methods. Among them, feed forward back propagation neural network (BPNN) is the widely used network topology for forecasting stock prices indices. In this study, we attempted to find the best network topology for one step ahead forecasting of All Share Price Index (ASPI), Colombo Stock Exchange (CSE) by employing feed forward BPNN. The daily data including ASPI, All Share Total Return Index (ASTRI), Market Price Earnings Ratio (PER), and Market Price to Book Value (PBV) were collected from CSE over the period from January 2nd 2012 to March 20th 2014. The experiment is implemented by prioritizing the number of inputs, learning rate, number of hidden layer neurons, and the number of training sessions. Eight models were selected on basis of input data and the number of training sessions. Then the best model was used for forecasting next trading day ASPI value. Empirical result reveals that the proposed model can be used as an approximation method to obtain next day value. In addition, it showed that the number of inputs, number of hidden layer neurons and the training times are significant factors that can be affected to the accuracy of forecast value.展开更多
文摘Fiber reinforced polymers (FRPs), unlike steel, are corrosion-resistant and therefore are of interest;however, their use is hindered because their brittle shear is formulated in most specifications using limited data available at the time. We aimed to predict the shear strength of concrete beams reinforced with FRP bars and without stirrups by compiling a relatively large database of 198 previously published test results (available in appendix). To model shear strength, an artificial neural network was trained by an ensemble of Levenberg-Marquardt and imperialist competitive algorithms. The results suggested superior accuracy of model compared to equations available in specifications and literature.
文摘Heart diagnosis is not always possible at every medical center, especially in the rural areas where less support and care, due to lack of advanced heart diagnosis equipment. Also, physician intuition and experience are not always sufficient to achieve high quality medical procedures results. Therefore, medical errors and undesirable results are reasons for a need for unconventional computer-based diagnosis systems, which in turns reduce medical fatal errors, increasing the patient safety and save lives. The proposed solution, which is based on an Artificial Neural Networks (ANNs), provides a decision support system to identify three main heart diseases: mitral stenosis, aortic stenosis and ventricular septal defect. Furthermore, the system deals with an encouraging opportunity to develop an operational screening and testing device for heart disease diagnosis and can deliver great assistance for clinicians to make advanced heart diagnosis. Using real medical data, series of experiments have been conducted to examine the performance and accuracy of the proposed solution. Compared results revealed that the system performance and accuracy are acceptable, with a heart diseases classification accuracy of 92%.
文摘Malware represents a real threat to information systems, because of the damage it causes. This threat is growing today, as these programs take on more complex forms. This means they escape traditional malware detection methods. Hence the need for artificial intelligence, more specifically Deep Learning, which could detect malware more effectively. In this article, we’ve proposed a model for malware detection using artificial neural networks. Our approach used data from the characteristics of machines, particularly computers, to train our Deep Learning algorithm. This model demonstrated an accuracy of around 83% in predicting the presence of malware on a machine. Thus, the use of artificial neural networks for malware detection has shown his ability to assimilate complex, non-linear patterns from data.
文摘The main purpose of this study was to develop and apply an adaptive neuro-fuzzy inference system(ANFIS)and Artificial Neural Networks(ANNs)model for predicting the drying characteristics of potato,garlic and cantaloupe at convective hot air dryer.Drying experiments were conducted at the air temperatures of 40,50,60 and 70C and the air speeds of 0.5,1 and l.5 m/s.Drying properties were including kinetic drying,effective moisture diffusivity(Deff)and specific energy consumption(SEC).The highest value of Deff obtained 9.76×10^-9,0.13×10^-9 and 9.97×10^-10 m^2/s for potato,garlic,and cantaloupe,respectively.The lowest value of SEC for potato,garlic,and cantaloupe were calculated 1.94105,4.52105 and 2.12105 kJ/kg,respectively.Results revealed that the ANFIS model had the high ability to predict the Deff(R^2=0.9900),SEC(R^2=0.9917),moisture ratio(R^2=0.9974)and drying rate(R^2=0.9901)during drying.So ANFIS method had the high ability to evaluate all output as compared to ANNs method.
基金supported by the Humanities and Social Sciences Youth Foundation of the Ministry of Education of PR of China under Grant No.11YJC870028the Selfdetermined Research Funds of CCNU from the Colleges’Basic Research and Operation of MOE under Grant No.CCNU13F030+1 种基金China Postdoctoral Science Foundation under Grant No.2013M530753National Science Foundation of China under Grant No.71390335
文摘The financial market volatility forecasting is regarded as a challenging task because of irreg ularity, high fluctuation, and noise. In this study, a multiscale ensemble forecasting model is proposed. The original financial series are decomposed firstly different scale components (i.e., approximation and details) using the maximum overlap discrete wavelet transform (MODWT). The approximation is pre- dicted by a hybrid forecasting model that combines autoregressive integrated moving average (ARIMA) with feedforward neural network (FNN). ARIMA model is used to generate a linear forecast, and then FNN is developed as a tool for nonlinear pattern recognition to correct the estimation error in ARIMA forecast. Moreover, details are predicted by Elman neural networks. Three weekly exchange rates data are collected to establish and validate the forecasting model. Empirical results demonstrate consistent better performance of the proposed approach.
基金This work was supported by Universities UK,Faculty of Technology and Environment and School of Engineering,Liverpool John Moores University,UK.
文摘A new on-line fault detection and isolation (FDI) scheme proposed for engines using an adaptive neural network classifier is evaluated for a wide range of operational modes to check the robustness of the scheme in this paper. The neural classifier is adaptive to cope with the significant parameter uncertainty, disturbances, and environment changes. The developed scheme is capable of diagnosing faults in on-line mode and the FDI for the closed-loop system with can be directly implemented in an on-board crankshaft speed feedback is investigated by diagnosis system (hardware). The robustness of testing it for a wide range of operational modes including robustness against fixed and sinusoidal throttle angle inputs, change in load, change in an engine parameter, and all these changes occurring at the same time. The evaluations are performed using a mean value engine model (MVEM), which is a widely used benchmark model for engine control system and FDI system design. The simulation results confirm the robustness of the proposed method for various uncertainties and disturbances.
基金Project Supported by Cultiration Found of the Key Scientific and Technical Innovation Project,Ministry of Education of China(707018)
文摘To solve the problem of the flashover forecasting of contaminated or polluted insulator,a flashover forecasting model of contaminated insulators based on nonlinear time series analysis is proposed in the paper.The ESDD is the key of flashover on polluted insulator.The ESDD value of insulator can be forecasted by the method of nonlinear time series analysis of the ESDD time series and a forecasting model of polluted insulator flashover is proposed in the paper.The forecasting model consists of two artificial neural networks that reflect relationship of environment,ESDD and flashover probability.The first is used to estimate the ESDD time series of insulator and the second is employed to calculate the probability of the flashover.A series of artificial pollution tests show that the results of the forecasting model is acceptable.
文摘The Artificial Neural Network (ANN) approach has been successfully used in many hydrological studies especially the rainfall-runoff modeling using continuous data. The present study examines its applicability to model the event-based rainfall-runoff process. A case study has been done for Ajay river basin to develop event-based rainfall-runoff model for the basin to simulate the hourly runoff at Sarath gauging site. The results demonstrate that ANN models are able to provide a good representation of an event-based rainfall-runoff process. The two important parameters, when predicting a flood hydrograph, are the magnitude of the peak discharge and the time to peak discharge. The developed ANN models have been able to predict this information with great accuracy. This shows that ANNs can be very efficient in modeling an event-based rainfall-runoff process for determining the peak discharge and time to the peak discharge very accurately. This is important in water resources design and management applications, where peak discharge and time to peak discharge are important input
文摘O-ethyl-O-aryl-N-isopropyl-phosphoramidothioates have relatively high herbicidal ac-tivity. The exact and comprehensive QSAN study is the key to finding new compoundswith high activity. Artificial neural networks (ANNs) are a newly emerging field ofinformation processing technology. As ANNs can be taught complex nonlinearinput-output transformations and have the ability of adaptive learning, resistance tonoise and fault tolerance, they can solve the pattern recognition and funtionalmapping problems.
文摘In this study, an Artificial Neural Network (ANN) model to predict the pressure drop of turbulent flow of titanium dioxide-water (TiO2-water) is presented. Experimental measurements of TiO2-water under fully developed turbulent flow regime in pipe with different particle volumetric concentrations, nanoparticle diameters, nanofluid temperatures and Reynolds numbers have been used to construct the proposed ANN model. The ANN model was then tested by comparing the predicted results with the measured values at different experimental conditions. The predicted values of pressure drop agreed almost completely with the measured values.
文摘Use of artificial neural networks has become a significant and an emerging research method due to its capability of capturing nonlinear behavior instead of conventional time series methods. Among them, feed forward back propagation neural network (BPNN) is the widely used network topology for forecasting stock prices indices. In this study, we attempted to find the best network topology for one step ahead forecasting of All Share Price Index (ASPI), Colombo Stock Exchange (CSE) by employing feed forward BPNN. The daily data including ASPI, All Share Total Return Index (ASTRI), Market Price Earnings Ratio (PER), and Market Price to Book Value (PBV) were collected from CSE over the period from January 2nd 2012 to March 20th 2014. The experiment is implemented by prioritizing the number of inputs, learning rate, number of hidden layer neurons, and the number of training sessions. Eight models were selected on basis of input data and the number of training sessions. Then the best model was used for forecasting next trading day ASPI value. Empirical result reveals that the proposed model can be used as an approximation method to obtain next day value. In addition, it showed that the number of inputs, number of hidden layer neurons and the training times are significant factors that can be affected to the accuracy of forecast value.