Different artificial two-stage ageing behaviors and their effect on stress corrosion cracking (SCC) susceptibility of AI-Zn-Mg alloy have been investigated. The experimental results show that two hardness peaks pres...Different artificial two-stage ageing behaviors and their effect on stress corrosion cracking (SCC) susceptibility of AI-Zn-Mg alloy have been investigated. The experimental results show that two hardness peaks present on the second-stage ageing-hardening curve when the first-stage ageing is dealt with comparatively lower temperature than the conventional one. The first peak is caused by dispersive and evenly distributed G.P. zones, while η ′phases and coarsened G.P. zones contribute to the second peak. Tensile strength of experimental alloy raises 9.6% (33.2 MPa) and SCC susceptibility decreases 38.9% by applying the second peak ageing regime instead of conventional T73. AI-Zn-Mg alloy obtains high strength and SCC resistance due to its finely dispersive matrix precipitates (MPts), coarsened and discontinuous grain boundary precipitates (GBPs), as well as the narrow precipitate free zone (PFZ) in the second peak ageing condition. 2017 Published by Elsevier Ltd on behalf of The editorial office of Journal of Materials Science & Technology.展开更多
Thermal analysis is one of the most used techniques for analyzing the behavior of aluminum alloys in order to analyze the precipitation of Guinier-Preston(GP)zones and different phases formed.In the present work,the b...Thermal analysis is one of the most used techniques for analyzing the behavior of aluminum alloys in order to analyze the precipitation of Guinier-Preston(GP)zones and different phases formed.In the present work,the behavior of the Al-5.46wt.%Zn-1.67wt.%Mg alloy was studied.The mechanism and kinetics of precipitation of the GP,the metastable phaseη′and the equilibrium phaseηwere investigated using DSC carried out between room temperature and 480℃at heating rates of 5,10,15 and 20℃/min.The apparent activation energies,calculated by DSC from isothermal calculation method using JMAK model,for GP,η′andηwere 56,79 and 96 kJ/mol,respectively,and those calculated by non-isothermal calculation method using Kissinger methods were 57,82 and 99 kJ/mol,respectively.The values of Avrami parameter,n,from isothermal calculation,during the precipitation of the GP,η′andηwere 1.103,1.9075 and 1.92,respectively,and those calculated by non-isothermal were 0.86,2.30 and 2.24,respectively.The results show that GP zones formation is governed by the migration of Zn and Mg atoms while the precipitation of theη′metastable phase and theηstable phase is governed by both the migration and the diffusion of the solute atoms.展开更多
Differential scanning calorimetric (DSC) study was carried out at different heating rates to examine the solid state reactions in a 7150 A1-Zn-Mg alloy in water-quenched (WQ) state, naturally and artificially aged...Differential scanning calorimetric (DSC) study was carried out at different heating rates to examine the solid state reactions in a 7150 A1-Zn-Mg alloy in water-quenched (WQ) state, naturally and artificially aged tempers. The exothermic and endothermic peaks of the thermograms indicating the solid state reaction sequence were identified. The shift of peak temperatures to higher temperatures with increasing heating rates suggests that the solid state reactions are thermally activated and kinetically controlled. The artificial aging behaviour of the alloy was assessed by measuring the variations of hardness with aging time. The fraction of transformation (Y), the rate of transformation (dY/dt), the transformation functionflY), and the kinetic parameters such as activation energy (Q) and frequency factor (k0) of all the solid state reactions in the alloy were determined by analyzing the DSC data, i.e. heat flow involved with the corresponding DSC peaks. It was found that the kinetic parameters of the solid state reactions are in good agreement with the published data.展开更多
Al-6Zn-2Mg and Al-6Zn-2Mg-0.4Er alloys were prepared by cast metallurgy. The effects of trace Er on the mechanical properties, recrystallization behavior and age-hardening characteristic of Al-Zn-Mg alloy were studied...Al-6Zn-2Mg and Al-6Zn-2Mg-0.4Er alloys were prepared by cast metallurgy. The effects of trace Er on the mechanical properties, recrystallization behavior and age-hardening characteristic of Al-Zn-Mg alloy were studied. The effect of Er on microstructures was also studied by OM, XRD, SEM, EDS and TEM. The results show that the addition of Er on Al-6Zn-2Mg alloy is capable of refining grains obviously. The addition of Er can improve the strength considerably by strengthening mechanisms of precipitation and grain refinement. With the addition of Er into Al-6Zn-2Mg alloy, the aging process is quickened and the age-hardening effect is heightened. Er additive can retard the recrystallizing behavior of Al-6Zn-2Mg alloy and cause the increase of recrystallization temperature due to the pinning effect of fine dispersed Al3Er precipitates on dislocations and subgrain boundaries.展开更多
The effects of different contents of rare earth element, and erbium, on the as-cast microstructures of Al-6Zn-2Mg and Al-6Zn-2Mg-1.8Cu alloys were studied by optical microscopy, scanning electron microscopy, X-ray dif...The effects of different contents of rare earth element, and erbium, on the as-cast microstructures of Al-6Zn-2Mg and Al-6Zn-2Mg-1.8Cu alloys were studied by optical microscopy, scanning electron microscopy, X-ray diffractometry, transmission electron microscopy and EDS analysis. The results show that the netlike structure of as-cast alloys can be remarkably refined, and the distance of dendritic structure decreases, with Er addition. However, the improvement results on Al-Zn-Mg-Cu are not better than that of Al-Zn-Mg. Er and Al can interact to form Al3Er phase, which is coherent with α(Al) matrix, with trace Er addition to the Al-Zn-Mg alloy. The refinement effect of Al-Zn-Mg alloys is familiar with the formation and precipitation of coherent Al3Er phases. The ternary compound AlCuEr, similar with AlCuSc phase, will form when Er is added to Al-Zn-Mg-Cu alloy, which suppresses the formation of Al3Er phase and doesnt solve in the following heat treatment.展开更多
Al-Zn-Mg alloys with different Zn/Mg mass ratios were evaluated as sacrificial anodes for cathodic protection of carbon steel in 3.5 wt.%Na Cl solution.The anodes were fabricated from pure Al,Zn and Mg metals using ca...Al-Zn-Mg alloys with different Zn/Mg mass ratios were evaluated as sacrificial anodes for cathodic protection of carbon steel in 3.5 wt.%Na Cl solution.The anodes were fabricated from pure Al,Zn and Mg metals using casting technique.Optical microscopy,SEM-EDS,XRD and electrochemical techniques were used.The results indicated that with decreasing Zn/Mg mass ratio,the grain size ofα(Al)and the particle size of the precipitates decreased while the volume fraction of the precipitates increased.The anode with Zn/Mg mass ratio>4.0 exhibited the lowest corrosion rate,while the anode with Zn/Mg mass ratio<0.62 gave the highest corrosion rate and provided the highest cathodic protection efficiency for carbon steel(AISI 1018).Furthermore,the results showed that the anode with Zn/Mg mass ratio<0.62 exhibited a porous corrosion product compared to the other anodes.展开更多
The microstructure and mechanical properties of multi-layer multi-pass TIG welded joints of Al-Zn-Mg alloy plates were studied.The phase constituent and microstructure of different regions of the welded joints were ch...The microstructure and mechanical properties of multi-layer multi-pass TIG welded joints of Al-Zn-Mg alloy plates were studied.The phase constituent and microstructure of different regions of the welded joints were characterized by scanning electron microscopy(SEM),X-ray diffraction(XRD),transmission electron microscopy(TEM)and energy disperse spectrum(EDS),while the mechanical properties were evaluated according to the impact test.A dispersively distributed spherical and needle-likeη(MgZn2)phase was obtained in the welding seam.The phase composition of the heat-affected zone(HAZ)wasα(Al)+η(MgZn2)+Al6Mn,and there were a large number of dispersively precipitated nanoscale particles.The welded joint zone had the highest impact toughness as compared with the other parts of the joint.The MgZn2 phase in the weld zone contributed to the improved toughness of the joint.Al2 MgCu phase in HAZ was proven to act as a crack source during fracture.展开更多
Experimental results of the investigation on the hardness of two Al-Zn-Mg alloys [Al-10.0 Zn-4.0 Mg and Al-8.5 Zn-3.0 Mg (wt pct)] aged in the temperature range 60~310℃ for different intervals of time from 1/4 h to ...Experimental results of the investigation on the hardness of two Al-Zn-Mg alloys [Al-10.0 Zn-4.0 Mg and Al-8.5 Zn-3.0 Mg (wt pct)] aged in the temperature range 60~310℃ for different intervals of time from 1/4 h to 168 h are presented. Both the alloys were found to show identical behaviour of hardness with ageing time. Alloy with higher Zn and Mg content had higher hardness than the alloy with lower solute content. There were three ranges of temperature in which different types of precipitates formed and affected the hardness. Some of the grain boundaries were found to migrate and precipitate free zone has been observed.展开更多
First principles calculations and scanning Kelvin probe force microscopy(SKPFM)were used to investigate the effect of elements migration ofα-AlFeMnSi phase on micro-galvanic corrosion behavior of Al-Zn-Mg alloy.The s...First principles calculations and scanning Kelvin probe force microscopy(SKPFM)were used to investigate the effect of elements migration ofα-AlFeMnSi phase on micro-galvanic corrosion behavior of Al-Zn-Mg alloy.The simulation results showed that the average work function difference between theα-AlFeMnSi phase and Al matrix decreased from 0.232 to 0.065 eV due to the synchronous migration of elements Fe-Mn-Si.Specifically,as the elements Fe-Si migration during the extrusion process,the average Volta potential difference detected by SKPFM between theα-AlFeMnSi phase and Al matrix dropped down to 432.383 mV from 648.370 mV.Thus,the elements migration reduced the micro-galvanic corrosion sensitivity of Al-Zn-Mg alloy.To reach the calculated low micro-galvanic tendency betweenα-AlFeMnSi phase and Al matrix,the diffusion of Mn should be promoted during extruding process.展开更多
The AA7150 aluminum alloy was compressed to various strains at strain rate of 10 s(-1) and temperatures of 300 °C and 450 °C, respectively. Flow stress behavior, substructure evolution, morphology and spat...The AA7150 aluminum alloy was compressed to various strains at strain rate of 10 s(-1) and temperatures of 300 °C and 450 °C, respectively. Flow stress behavior, substructure evolution, morphology and spatial distribution of precipitates were studied based on differential scanning calorimetry analysis and transmission electron microscope observation. The results showed that dynamic flow softening occurs during hot deformation. The main softening mechanism could be concluded as dynamic recovery at 300 °C and continuous dynamic recrystallization at 450 °C. The clear heterogeneous spatial distributions of precipitates are found during deformation and enhanced with increased strain. Higher contents of Cu in T phases are found at 450 °C than at 300 °C, which present a transformation process from T phases to S phases as well. The associated evidence of dynamic precipitation on dislocations and particle-stimulated nucleation, as well as the detailed microstructural inherited relationship and morphological texture(particles preferred orientation) were characterized.展开更多
The aim of the present work is to develop a model for simulating double-peak precipitation hardening kinetics in Al-Zn-Mg alloy with the simultaneous formation of different types of precipitates at elevated temperatur...The aim of the present work is to develop a model for simulating double-peak precipitation hardening kinetics in Al-Zn-Mg alloy with the simultaneous formation of different types of precipitates at elevated temperatures based on the modified Langer-Schwartz approach. The double aging peaks are present in the long time age-hardening curves of Al-Zn-Mg alloys. The physically-based model, while taking explicitly into account nucleation, growth, coarsening of the new phase precipitations and two strengthening mechanisms associated with particle-dislocation interaction (shearing and bypassing), was used for the analysis of precipitates evolution and precipitation hardening during aging of Al-Zn-Mg alloy. Model predictions were compared with the measurements of Al-Zn-Mg alloy. The systematic and quantitative results show that the predicted hardness profiles of double peaks via adding a shape dependent parameter in the growth equation for growth and coarsening generally agree well with the measured ones. Two strengthening mechanisms associated with particle-dislocation interaction (shearing and bypassing) were considered operating simultaneously in view of the particle size-distribution. The transition from shearing to bypassing strengthening mechanism was found to occur at rather early stage of the particle growth. The bypassing was found to be the prevailing strengthening mechanism in the investigated alloys.展开更多
The influence of different ageing processes on the microstructure, corrosion behaviors and mechanical properties of extruded Al-5.6Zn-1.6Mg-0.05Zr(wt.%) alloy was studied in this work. The changes of morphology, size ...The influence of different ageing processes on the microstructure, corrosion behaviors and mechanical properties of extruded Al-5.6Zn-1.6Mg-0.05Zr(wt.%) alloy was studied in this work. The changes of morphology, size and distribution of MgZn_(2)precipitate with ageing temperature and time were revealed by optical and electron microscopy. Intergranular corrosion(IGC) and exfoliation corrosion(EXCO) tests were carried out to assess the changes in corrosion susceptibility of the tempered alloy, and some white spots on the surface of the sample aged for longer time were found to be precursors of pits. Electrochemical cyclic polarization test depicted the corrosion behavior under different tempers. Ageing influences on the mechanical behaviors of the alloy were revealed by evaluating its microhardness and tensile strength. The microscopic features of the strengthening phases determined by the ageing procedure directly affect the corrosion resistance and mechanical properties of the alloy.展开更多
The microstructure and corrosion behavior of Al-Zn-Mg alloy(namely 7×××)after natural aging treatment(NAT)and artificial aging treatment(AAT)in aqueous NaCl solutions containing different aggressive ion...The microstructure and corrosion behavior of Al-Zn-Mg alloy(namely 7×××)after natural aging treatment(NAT)and artificial aging treatment(AAT)in aqueous NaCl solutions containing different aggressive ions have been investigated in current work.Results of microstructure characterization demonstrate that the aging treatment has a great influence on the grain size and precipitates.The grain size is relatively sizeable and no evident precipitates are observed in alloy after NAT comparable with that after AAT.The electrochemical corrosion behavior of alloy was studied by polarization curve and electrochemical impedance spectroscopy(EIS).The corrosion potential(E_(corr))of the aluminum alloy is more negative in 3.5 wt.%NaCl containing 0.052 wt.%NaHSO_(3)solution than that in 3.5 wt.%NaCl solutions with or without 0.907 wt.%NaHCO_(3).Charge transfer resistance(Rct)results reveal that alloy after AAT has an enhancement of corrosion resistance compare with that after NAT.With the immersion time increasing,mostly pitting spreads over the surface of the alloy only in NaCl solution,whereas exfoliation corrosion mainly occurs in NaCl solutions containing NaHSO_(3)or NaHCO_(3).展开更多
基金financial supports by National Key R&D Program of China (No. 2016YFB1200600 and No. 2016YFB1200504)Strategic Priority Program of the Chinese Academy of Sciences (No. XDB22000000)
文摘Different artificial two-stage ageing behaviors and their effect on stress corrosion cracking (SCC) susceptibility of AI-Zn-Mg alloy have been investigated. The experimental results show that two hardness peaks present on the second-stage ageing-hardening curve when the first-stage ageing is dealt with comparatively lower temperature than the conventional one. The first peak is caused by dispersive and evenly distributed G.P. zones, while η ′phases and coarsened G.P. zones contribute to the second peak. Tensile strength of experimental alloy raises 9.6% (33.2 MPa) and SCC susceptibility decreases 38.9% by applying the second peak ageing regime instead of conventional T73. AI-Zn-Mg alloy obtains high strength and SCC resistance due to its finely dispersive matrix precipitates (MPts), coarsened and discontinuous grain boundary precipitates (GBPs), as well as the narrow precipitate free zone (PFZ) in the second peak ageing condition. 2017 Published by Elsevier Ltd on behalf of The editorial office of Journal of Materials Science & Technology.
文摘Thermal analysis is one of the most used techniques for analyzing the behavior of aluminum alloys in order to analyze the precipitation of Guinier-Preston(GP)zones and different phases formed.In the present work,the behavior of the Al-5.46wt.%Zn-1.67wt.%Mg alloy was studied.The mechanism and kinetics of precipitation of the GP,the metastable phaseη′and the equilibrium phaseηwere investigated using DSC carried out between room temperature and 480℃at heating rates of 5,10,15 and 20℃/min.The apparent activation energies,calculated by DSC from isothermal calculation method using JMAK model,for GP,η′andηwere 56,79 and 96 kJ/mol,respectively,and those calculated by non-isothermal calculation method using Kissinger methods were 57,82 and 99 kJ/mol,respectively.The values of Avrami parameter,n,from isothermal calculation,during the precipitation of the GP,η′andηwere 1.103,1.9075 and 1.92,respectively,and those calculated by non-isothermal were 0.86,2.30 and 2.24,respectively.The results show that GP zones formation is governed by the migration of Zn and Mg atoms while the precipitation of theη′metastable phase and theηstable phase is governed by both the migration and the diffusion of the solute atoms.
文摘Differential scanning calorimetric (DSC) study was carried out at different heating rates to examine the solid state reactions in a 7150 A1-Zn-Mg alloy in water-quenched (WQ) state, naturally and artificially aged tempers. The exothermic and endothermic peaks of the thermograms indicating the solid state reaction sequence were identified. The shift of peak temperatures to higher temperatures with increasing heating rates suggests that the solid state reactions are thermally activated and kinetically controlled. The artificial aging behaviour of the alloy was assessed by measuring the variations of hardness with aging time. The fraction of transformation (Y), the rate of transformation (dY/dt), the transformation functionflY), and the kinetic parameters such as activation energy (Q) and frequency factor (k0) of all the solid state reactions in the alloy were determined by analyzing the DSC data, i.e. heat flow involved with the corresponding DSC peaks. It was found that the kinetic parameters of the solid state reactions are in good agreement with the published data.
基金Project(G1999064907) supported by the National Key Fundamental Research and Development Program of China
文摘Al-6Zn-2Mg and Al-6Zn-2Mg-0.4Er alloys were prepared by cast metallurgy. The effects of trace Er on the mechanical properties, recrystallization behavior and age-hardening characteristic of Al-Zn-Mg alloy were studied. The effect of Er on microstructures was also studied by OM, XRD, SEM, EDS and TEM. The results show that the addition of Er on Al-6Zn-2Mg alloy is capable of refining grains obviously. The addition of Er can improve the strength considerably by strengthening mechanisms of precipitation and grain refinement. With the addition of Er into Al-6Zn-2Mg alloy, the aging process is quickened and the age-hardening effect is heightened. Er additive can retard the recrystallizing behavior of Al-6Zn-2Mg alloy and cause the increase of recrystallization temperature due to the pinning effect of fine dispersed Al3Er precipitates on dislocations and subgrain boundaries.
文摘The effects of different contents of rare earth element, and erbium, on the as-cast microstructures of Al-6Zn-2Mg and Al-6Zn-2Mg-1.8Cu alloys were studied by optical microscopy, scanning electron microscopy, X-ray diffractometry, transmission electron microscopy and EDS analysis. The results show that the netlike structure of as-cast alloys can be remarkably refined, and the distance of dendritic structure decreases, with Er addition. However, the improvement results on Al-Zn-Mg-Cu are not better than that of Al-Zn-Mg. Er and Al can interact to form Al3Er phase, which is coherent with α(Al) matrix, with trace Er addition to the Al-Zn-Mg alloy. The refinement effect of Al-Zn-Mg alloys is familiar with the formation and precipitation of coherent Al3Er phases. The ternary compound AlCuEr, similar with AlCuSc phase, will form when Er is added to Al-Zn-Mg-Cu alloy, which suppresses the formation of Al3Er phase and doesnt solve in the following heat treatment.
文摘Al-Zn-Mg alloys with different Zn/Mg mass ratios were evaluated as sacrificial anodes for cathodic protection of carbon steel in 3.5 wt.%Na Cl solution.The anodes were fabricated from pure Al,Zn and Mg metals using casting technique.Optical microscopy,SEM-EDS,XRD and electrochemical techniques were used.The results indicated that with decreasing Zn/Mg mass ratio,the grain size ofα(Al)and the particle size of the precipitates decreased while the volume fraction of the precipitates increased.The anode with Zn/Mg mass ratio>4.0 exhibited the lowest corrosion rate,while the anode with Zn/Mg mass ratio<0.62 gave the highest corrosion rate and provided the highest cathodic protection efficiency for carbon steel(AISI 1018).Furthermore,the results showed that the anode with Zn/Mg mass ratio<0.62 exhibited a porous corrosion product compared to the other anodes.
基金Project(ZR2016EEQ03) supported by the Shandong Province Natural Science Foundation,ChinaProject(2018M641822) supported by the China Postdoctoral Science Foundation-General ProgramProject(HIT.NSRIF.201703) supported by the Natural Scientific Research Innovation Foundation in HIT,China
文摘The microstructure and mechanical properties of multi-layer multi-pass TIG welded joints of Al-Zn-Mg alloy plates were studied.The phase constituent and microstructure of different regions of the welded joints were characterized by scanning electron microscopy(SEM),X-ray diffraction(XRD),transmission electron microscopy(TEM)and energy disperse spectrum(EDS),while the mechanical properties were evaluated according to the impact test.A dispersively distributed spherical and needle-likeη(MgZn2)phase was obtained in the welding seam.The phase composition of the heat-affected zone(HAZ)wasα(Al)+η(MgZn2)+Al6Mn,and there were a large number of dispersively precipitated nanoscale particles.The welded joint zone had the highest impact toughness as compared with the other parts of the joint.The MgZn2 phase in the weld zone contributed to the improved toughness of the joint.Al2 MgCu phase in HAZ was proven to act as a crack source during fracture.
文摘Experimental results of the investigation on the hardness of two Al-Zn-Mg alloys [Al-10.0 Zn-4.0 Mg and Al-8.5 Zn-3.0 Mg (wt pct)] aged in the temperature range 60~310℃ for different intervals of time from 1/4 h to 168 h are presented. Both the alloys were found to show identical behaviour of hardness with ageing time. Alloy with higher Zn and Mg content had higher hardness than the alloy with lower solute content. There were three ranges of temperature in which different types of precipitates formed and affected the hardness. Some of the grain boundaries were found to migrate and precipitate free zone has been observed.
基金supported by the National Natural Science Foundation of China(No.52125102)the Fundamental Research Funds for the Central Universities(No.FRF-TP-20-01B)+1 种基金the Guangdong Basic and Applied Basic Research Foundation(No.2020B1515120093)the Special Fund Support for Taishan Industrial Leading Talents Project。
文摘First principles calculations and scanning Kelvin probe force microscopy(SKPFM)were used to investigate the effect of elements migration ofα-AlFeMnSi phase on micro-galvanic corrosion behavior of Al-Zn-Mg alloy.The simulation results showed that the average work function difference between theα-AlFeMnSi phase and Al matrix decreased from 0.232 to 0.065 eV due to the synchronous migration of elements Fe-Mn-Si.Specifically,as the elements Fe-Si migration during the extrusion process,the average Volta potential difference detected by SKPFM between theα-AlFeMnSi phase and Al matrix dropped down to 432.383 mV from 648.370 mV.Thus,the elements migration reduced the micro-galvanic corrosion sensitivity of Al-Zn-Mg alloy.To reach the calculated low micro-galvanic tendency betweenα-AlFeMnSi phase and Al matrix,the diffusion of Mn should be promoted during extruding process.
基金Project(20130161110007) supported by the Doctoral Program of the Ministry of Education,ChinaProject(CX2013B128) supported by Hunan Provincial Innovation Foundation for Postgraduate,ChinaProject(201306130021) supported by the Chinese Scholarship Council
文摘The AA7150 aluminum alloy was compressed to various strains at strain rate of 10 s(-1) and temperatures of 300 °C and 450 °C, respectively. Flow stress behavior, substructure evolution, morphology and spatial distribution of precipitates were studied based on differential scanning calorimetry analysis and transmission electron microscope observation. The results showed that dynamic flow softening occurs during hot deformation. The main softening mechanism could be concluded as dynamic recovery at 300 °C and continuous dynamic recrystallization at 450 °C. The clear heterogeneous spatial distributions of precipitates are found during deformation and enhanced with increased strain. Higher contents of Cu in T phases are found at 450 °C than at 300 °C, which present a transformation process from T phases to S phases as well. The associated evidence of dynamic precipitation on dislocations and particle-stimulated nucleation, as well as the detailed microstructural inherited relationship and morphological texture(particles preferred orientation) were characterized.
基金Project(51021063)supported by the Creative Research Group of the National Natural Science Foundation of ChinaProject(50831007)supported by the National Natural Science Foundation of China+1 种基金Project(2011CB610401)supported by the National Basic Research Program of ChinaProject(12C1142)supported by the Education Department of Hunan Province,China
文摘The aim of the present work is to develop a model for simulating double-peak precipitation hardening kinetics in Al-Zn-Mg alloy with the simultaneous formation of different types of precipitates at elevated temperatures based on the modified Langer-Schwartz approach. The double aging peaks are present in the long time age-hardening curves of Al-Zn-Mg alloys. The physically-based model, while taking explicitly into account nucleation, growth, coarsening of the new phase precipitations and two strengthening mechanisms associated with particle-dislocation interaction (shearing and bypassing), was used for the analysis of precipitates evolution and precipitation hardening during aging of Al-Zn-Mg alloy. Model predictions were compared with the measurements of Al-Zn-Mg alloy. The systematic and quantitative results show that the predicted hardness profiles of double peaks via adding a shape dependent parameter in the growth equation for growth and coarsening generally agree well with the measured ones. Two strengthening mechanisms associated with particle-dislocation interaction (shearing and bypassing) were considered operating simultaneously in view of the particle size-distribution. The transition from shearing to bypassing strengthening mechanism was found to occur at rather early stage of the particle growth. The bypassing was found to be the prevailing strengthening mechanism in the investigated alloys.
基金Project(2021zzts0152) supported by the Fundamental Research Funds for the Central Universities,ChinaProject(U1837207) supported by the National Natural Science Foundation of China。
文摘The influence of different ageing processes on the microstructure, corrosion behaviors and mechanical properties of extruded Al-5.6Zn-1.6Mg-0.05Zr(wt.%) alloy was studied in this work. The changes of morphology, size and distribution of MgZn_(2)precipitate with ageing temperature and time were revealed by optical and electron microscopy. Intergranular corrosion(IGC) and exfoliation corrosion(EXCO) tests were carried out to assess the changes in corrosion susceptibility of the tempered alloy, and some white spots on the surface of the sample aged for longer time were found to be precursors of pits. Electrochemical cyclic polarization test depicted the corrosion behavior under different tempers. Ageing influences on the mechanical behaviors of the alloy were revealed by evaluating its microhardness and tensile strength. The microscopic features of the strengthening phases determined by the ageing procedure directly affect the corrosion resistance and mechanical properties of the alloy.
基金financially supported by the National Key R&D Program of China(No.2017YFB0702302)the National Natural Science Foundation of China(No.51771174)the National Materials Corrosion and Protection Data Center。
文摘The microstructure and corrosion behavior of Al-Zn-Mg alloy(namely 7×××)after natural aging treatment(NAT)and artificial aging treatment(AAT)in aqueous NaCl solutions containing different aggressive ions have been investigated in current work.Results of microstructure characterization demonstrate that the aging treatment has a great influence on the grain size and precipitates.The grain size is relatively sizeable and no evident precipitates are observed in alloy after NAT comparable with that after AAT.The electrochemical corrosion behavior of alloy was studied by polarization curve and electrochemical impedance spectroscopy(EIS).The corrosion potential(E_(corr))of the aluminum alloy is more negative in 3.5 wt.%NaCl containing 0.052 wt.%NaHSO_(3)solution than that in 3.5 wt.%NaCl solutions with or without 0.907 wt.%NaHCO_(3).Charge transfer resistance(Rct)results reveal that alloy after AAT has an enhancement of corrosion resistance compare with that after NAT.With the immersion time increasing,mostly pitting spreads over the surface of the alloy only in NaCl solution,whereas exfoliation corrosion mainly occurs in NaCl solutions containing NaHSO_(3)or NaHCO_(3).