Metabolic syndrome(MetS)is a clustering of metabolic abnormalities that is associated with increased risk of developing cardiovascular disease and type 2 diabetes.There is growing body of data showing the associations...Metabolic syndrome(MetS)is a clustering of metabolic abnormalities that is associated with increased risk of developing cardiovascular disease and type 2 diabetes.There is growing body of data showing the associations of genetic variants of the genes involved in the PI3K/AKT/mTOR pathway with diabetes and obesity.We aimed to investigate the association between MetS and its components with the genetic polymorphism in AKT1,rs1130233(T>C).Total of 618 participants,recruited from Mashhad stroke and heart atherosclerosis disorder cohort(MASHAD study).Patients with MetS were defined by using international diabetes federation(IDF)criteria(n Z 326)and those without MetS(n Z 261)were recruited.Anthropometric and biochemical parameters were measured in all subjects.Genetic analysis for the rs1130233 polymorphism was performed,using the ABI-StepOne instruments with SDS version-2.0 software.Individuals with MetS had a significantly higher levels of BMI,waistcircumference,total cholesterol,triglyceride,high sensitivity-c reactive protein(hs-CRP)and blood-pressure,and lower concentrations of high density lipoprotein(HDL-C),compared to non-MetS individuals(P<0.05).The association between the rs1130233 and MetS was not significant.Subjects with a CC or CT genotypes had a significantly higher serum hs-CRP-level(OR:1.5;95%CI(1.05e2.1),P Z 0.02).Additionally,subjects who carried the TC genotype had a higher BMI compared to the CC genotype(p value Z 0.045).Our findings demonstrated that AKT1,rs1130233(T>C)polymorphism was associated with major components of MetS such as hs-CRP,and BMI,indicating further investigation in a multi-center setting to explore its value as an emerging biomarker of risk stratification marker.展开更多
BACKGROUND Pancreatic cancer is a highly malignant tumor of the gastrointestinal system whose emerging resistance to chemotherapy has necessitated the development of novel antitumor treatments.Scoparone,a traditional ...BACKGROUND Pancreatic cancer is a highly malignant tumor of the gastrointestinal system whose emerging resistance to chemotherapy has necessitated the development of novel antitumor treatments.Scoparone,a traditional Chinese medicine monomer with a wide range of pharmacological properties,has attracted considerable attention for its antitumor activity.AIM To explore the potential antitumor effect of scoparone on pancreatic cancer and the possible molecular mechanism of action.METHODS The target genes of scoparone were determined using both the bioinformatics and multiplatform analyses.The effect of scoparone on pancreatic cancer cell proliferation,migration,invasion,cell cycle,and apoptosis was detected in vitro.The expression of hub genes was tested using quantitative reverse transcription polymerase chain reaction(qRT-PCR),and the molecular mechanism was analyzed using Western blot.The in vivo effect of scoparone on pancreatic cancer cell proliferation was detected using a xenograft tumor model in nude mice as well as immunohistochemistry.RESULTS The hub genes involved in the suppression of pancreatic cancer by scoparone were obtained by network bioinformatics analyses using publicly available databases and platforms,including SwissTargetPrediction,STITCH,GeneCards,CTD,STRING,WebGestalt,Cytoscape,and Gepia;AKT1 was confirmed using qRT-PCR to be the hub gene.Cell Counting Kit-8 assay revealed that the viability of Capan-2 and SW1990 cells was significantly reduced by scoparone treatment exhibiting IC50 values of 225.2μmol/L and 209.1μmol/L,respectively.Wound healing and transwell assays showed that scoparone inhibited the migration and invasion of pancreatic cancer cells.Additionally,flow cytometry confirmed that scoparone caused cell cycle arrest and induced apoptosis.Scoparone also increased the expression levels of Bax and cleaved caspase-3,decreased the levels of MMP9 and Bcl-2,and suppressed the phosphorylation of Akt without affecting total PI3K and Akt.Moreover,compared with the control group,xenograft 展开更多
Background:To initially clarify the potential therapeutic targets and pharmacological mechanism regarding Gualou Qumai Wan(GQW),a kind of traditional Chinese medicine(TCM),in clear cell renal cell carcinoma(ccRCC)by v...Background:To initially clarify the potential therapeutic targets and pharmacological mechanism regarding Gualou Qumai Wan(GQW),a kind of traditional Chinese medicine(TCM),in clear cell renal cell carcinoma(ccRCC)by virtue of the network pharmacology analysis and molecular docking analysis.Methods:The screening of bioactive components and targets of GQW was based on the Traditional Chinese Medicine System Pharmacology(TCMSP)and the UniProt platform served for standardizing their targets.Online Mendelian Inheritance in Man(OMIM),PharmGkb,TTD,DrugBank and GeneCards databases were searched to collect the disease targets of ccRCC.Cytoscape assisted in constructing herb-compound-target(H-C-T)networks.The STRING database was searched for constructing the target protein-protein interaction(PPI)networks,while the R programming language served for analyzing GO functional terms and the KEGG pathways related to potential targets.Analyses of core genes related to survival and tumor microenvironment(TME)were conducted respectively based on the GEPIA2 database and TIMER 2.0 database.Human Protein Atlas(HPA)and The Cancer Genome Atlas(TCGA)helped to obtain core genes’protein expression as well as transcriptome expression level.Autodock Vina software validated the molecular docking regarding GQW components and pivotal targets.Results:The constructed H-C-T networks mainly had 33 compounds and 65 targets.A topological analysis of the PPI network identified that ESR1,AKT1,HIF1A,PTGS2,TP53 and VEGFA serve as core targets in the way GQW affects ccRCC.According to the GO and KEGG pathway enrichment analyses,the effects of GQW are mediated by genes related to hypoxia and oxidative stress as well as the Chemical carcinogenesis-receptor activation and PI3K-Akt signaling pathways.AKT1 shows a close relation to the recruitment of various immune cells and can remarkably affect disease prognosis according to reports.Molecular docking and molecular dynamics simulations showed that diosgenin has higher affinity with core targets.Conclusion:T展开更多
目的:基于网络药理学和分子对接方法,确定复方黄柏液治疗的Ⅲ度烧伤肉芽组织愈合的有效活性成分、关键靶点和潜在的药理学机制,并进行肉芽组织成纤维细胞的初步验证。方法:从公共数据库中药系统药理学分析平台(TCMSP)检索复方黄柏液组...目的:基于网络药理学和分子对接方法,确定复方黄柏液治疗的Ⅲ度烧伤肉芽组织愈合的有效活性成分、关键靶点和潜在的药理学机制,并进行肉芽组织成纤维细胞的初步验证。方法:从公共数据库中药系统药理学分析平台(TCMSP)检索复方黄柏液组成成分连翘、黄柏、金银花的有效成分和靶点;GeneCards、OMIM数据库检索“Ⅲ度烧伤”疾病相关靶点。通过生物信息学分析,包括蛋白质-蛋白质相互作用(Protein-proteininteraction,PPI)以及基因本体(Gene ontology,GO)和京都基因和基因组百科全书(Kyoto encyclopedia of genes and genomes,KEGG)分析,获得了关键的有效成分、核心靶点和相关信号通路;DiscoveryStudio分子对接分析有效成分化合物与靶蛋白的结合。0.5%的DMSO溶液处理的成纤维细胞记为对照组;槲皮素(40μmol/ml)处理的成纤维细胞记为槲皮素组。采用CCK8法、Transwell实验检测细胞增殖、迁移侵袭;WB试验检测细胞p-PI3K、p-Akt蛋白。结果:共筛选出74个有效成分,331个作用靶点,AKT1为潜在的治疗靶点,木犀草素、山柰酚、槲皮素、汉黄芩素、丹皮酚为潜在的候选药物。PI3K-AKT信号通路可能在复方黄柏液治疗Ⅲ度烧伤中发挥关键作用;分子对接表明槲皮素与AKT1结合最好。与对照组相比,槲皮素组成纤维细胞增殖、迁移侵袭均显著降低,p-PI3K、p-Akt蛋白表达也显著降低(P<0.05)。结论:复方黄柏液促进Ⅲ度烧伤患者肉芽组织形成的生物活性成分为槲皮素,潜在通路为PI3K-AKT信号通路,为复方黄柏液治疗Ⅲ度烧伤的研究提供了思路。展开更多
Background: Intramuscular fat(IMF) content is a vital parameter for assessing pork quality. Increasing evidence has shown that microRNAs(miRNAs) play an important role in regulating porcine IMF deposition. Here, a nov...Background: Intramuscular fat(IMF) content is a vital parameter for assessing pork quality. Increasing evidence has shown that microRNAs(miRNAs) play an important role in regulating porcine IMF deposition. Here, a novel miRNA implicated in porcine IMF adipogenesis was found, and its effect and regulatory mechanism were further explored with respect to intramuscular preadipocyte proliferation and differentiation.Results: By porcine adipose tissue miRNA sequencing analysis, we found that miR-146a-5p is a potential regulator of porcine IMF adipogenesis. Further studies showed that miR-146a-5p mimics inhibited porcine intramuscular preadipocyte proliferation and differentiation, while the miR-146a-5p inhibitor promoted cell proliferation and adipogenic differentiation. Mechanistically, miR-146a-5p suppressed cell proliferation by directly targeting SMAD family member 4(SMAD4) to attenuate TGF-β signaling. Moreover, miR-146a-5p inhibited the differentiation of intramuscular preadipocytes by targeting TNF receptor-associated factor 6(TRAF6) to weaken the AKT/mTORC1 signaling downstream of the TRAF6 pathway.Conclusions: MiR-146a-5p targets SMAD4 and TRAF6 to inhibit porcine intramuscular adipogenesis by attenuating TGF-β and AKT/mTORC1 signaling, respectively. These findings provide a novel miRNA biomarker for regulating intramuscular adipogenesis to promote pork quality.展开更多
基金We would like to thank Research Council of Mashhad University of Medical Science and Hakim Sabzevary University for their financial supports.
文摘Metabolic syndrome(MetS)is a clustering of metabolic abnormalities that is associated with increased risk of developing cardiovascular disease and type 2 diabetes.There is growing body of data showing the associations of genetic variants of the genes involved in the PI3K/AKT/mTOR pathway with diabetes and obesity.We aimed to investigate the association between MetS and its components with the genetic polymorphism in AKT1,rs1130233(T>C).Total of 618 participants,recruited from Mashhad stroke and heart atherosclerosis disorder cohort(MASHAD study).Patients with MetS were defined by using international diabetes federation(IDF)criteria(n Z 326)and those without MetS(n Z 261)were recruited.Anthropometric and biochemical parameters were measured in all subjects.Genetic analysis for the rs1130233 polymorphism was performed,using the ABI-StepOne instruments with SDS version-2.0 software.Individuals with MetS had a significantly higher levels of BMI,waistcircumference,total cholesterol,triglyceride,high sensitivity-c reactive protein(hs-CRP)and blood-pressure,and lower concentrations of high density lipoprotein(HDL-C),compared to non-MetS individuals(P<0.05).The association between the rs1130233 and MetS was not significant.Subjects with a CC or CT genotypes had a significantly higher serum hs-CRP-level(OR:1.5;95%CI(1.05e2.1),P Z 0.02).Additionally,subjects who carried the TC genotype had a higher BMI compared to the CC genotype(p value Z 0.045).Our findings demonstrated that AKT1,rs1130233(T>C)polymorphism was associated with major components of MetS such as hs-CRP,and BMI,indicating further investigation in a multi-center setting to explore its value as an emerging biomarker of risk stratification marker.
基金Supported by National Natural Science Foundation of China,No.817706555Special Project from the Central Government of Liaoning Province,No.2018107003+6 种基金Liaoning Province Medical Science and Technology Achievements Transformation Foundation,No.2018225120China Postdoctoral Science Foundation,No.2020M670101ZXDoctoral Scientific Research Foundation of Liaoning Province,No.2019-BS-276Science and Technology Program of Shenyang,No.19-112-4-103Youth Support Foundation of China Medical University,No.QGZ2018058Scientific Fund of Shengjing Hospital,No.201801345 Talent Project of Shengjing Hospital,No.52-30C.
文摘BACKGROUND Pancreatic cancer is a highly malignant tumor of the gastrointestinal system whose emerging resistance to chemotherapy has necessitated the development of novel antitumor treatments.Scoparone,a traditional Chinese medicine monomer with a wide range of pharmacological properties,has attracted considerable attention for its antitumor activity.AIM To explore the potential antitumor effect of scoparone on pancreatic cancer and the possible molecular mechanism of action.METHODS The target genes of scoparone were determined using both the bioinformatics and multiplatform analyses.The effect of scoparone on pancreatic cancer cell proliferation,migration,invasion,cell cycle,and apoptosis was detected in vitro.The expression of hub genes was tested using quantitative reverse transcription polymerase chain reaction(qRT-PCR),and the molecular mechanism was analyzed using Western blot.The in vivo effect of scoparone on pancreatic cancer cell proliferation was detected using a xenograft tumor model in nude mice as well as immunohistochemistry.RESULTS The hub genes involved in the suppression of pancreatic cancer by scoparone were obtained by network bioinformatics analyses using publicly available databases and platforms,including SwissTargetPrediction,STITCH,GeneCards,CTD,STRING,WebGestalt,Cytoscape,and Gepia;AKT1 was confirmed using qRT-PCR to be the hub gene.Cell Counting Kit-8 assay revealed that the viability of Capan-2 and SW1990 cells was significantly reduced by scoparone treatment exhibiting IC50 values of 225.2μmol/L and 209.1μmol/L,respectively.Wound healing and transwell assays showed that scoparone inhibited the migration and invasion of pancreatic cancer cells.Additionally,flow cytometry confirmed that scoparone caused cell cycle arrest and induced apoptosis.Scoparone also increased the expression levels of Bax and cleaved caspase-3,decreased the levels of MMP9 and Bcl-2,and suppressed the phosphorylation of Akt without affecting total PI3K and Akt.Moreover,compared with the control group,xenograft
基金supported by Weifang Health Commission Traditional Chinese Medicine Research Project Plan(WFZYY2023-1-004).
文摘Background:To initially clarify the potential therapeutic targets and pharmacological mechanism regarding Gualou Qumai Wan(GQW),a kind of traditional Chinese medicine(TCM),in clear cell renal cell carcinoma(ccRCC)by virtue of the network pharmacology analysis and molecular docking analysis.Methods:The screening of bioactive components and targets of GQW was based on the Traditional Chinese Medicine System Pharmacology(TCMSP)and the UniProt platform served for standardizing their targets.Online Mendelian Inheritance in Man(OMIM),PharmGkb,TTD,DrugBank and GeneCards databases were searched to collect the disease targets of ccRCC.Cytoscape assisted in constructing herb-compound-target(H-C-T)networks.The STRING database was searched for constructing the target protein-protein interaction(PPI)networks,while the R programming language served for analyzing GO functional terms and the KEGG pathways related to potential targets.Analyses of core genes related to survival and tumor microenvironment(TME)were conducted respectively based on the GEPIA2 database and TIMER 2.0 database.Human Protein Atlas(HPA)and The Cancer Genome Atlas(TCGA)helped to obtain core genes’protein expression as well as transcriptome expression level.Autodock Vina software validated the molecular docking regarding GQW components and pivotal targets.Results:The constructed H-C-T networks mainly had 33 compounds and 65 targets.A topological analysis of the PPI network identified that ESR1,AKT1,HIF1A,PTGS2,TP53 and VEGFA serve as core targets in the way GQW affects ccRCC.According to the GO and KEGG pathway enrichment analyses,the effects of GQW are mediated by genes related to hypoxia and oxidative stress as well as the Chemical carcinogenesis-receptor activation and PI3K-Akt signaling pathways.AKT1 shows a close relation to the recruitment of various immune cells and can remarkably affect disease prognosis according to reports.Molecular docking and molecular dynamics simulations showed that diosgenin has higher affinity with core targets.Conclusion:T
文摘目的:基于网络药理学和分子对接方法,确定复方黄柏液治疗的Ⅲ度烧伤肉芽组织愈合的有效活性成分、关键靶点和潜在的药理学机制,并进行肉芽组织成纤维细胞的初步验证。方法:从公共数据库中药系统药理学分析平台(TCMSP)检索复方黄柏液组成成分连翘、黄柏、金银花的有效成分和靶点;GeneCards、OMIM数据库检索“Ⅲ度烧伤”疾病相关靶点。通过生物信息学分析,包括蛋白质-蛋白质相互作用(Protein-proteininteraction,PPI)以及基因本体(Gene ontology,GO)和京都基因和基因组百科全书(Kyoto encyclopedia of genes and genomes,KEGG)分析,获得了关键的有效成分、核心靶点和相关信号通路;DiscoveryStudio分子对接分析有效成分化合物与靶蛋白的结合。0.5%的DMSO溶液处理的成纤维细胞记为对照组;槲皮素(40μmol/ml)处理的成纤维细胞记为槲皮素组。采用CCK8法、Transwell实验检测细胞增殖、迁移侵袭;WB试验检测细胞p-PI3K、p-Akt蛋白。结果:共筛选出74个有效成分,331个作用靶点,AKT1为潜在的治疗靶点,木犀草素、山柰酚、槲皮素、汉黄芩素、丹皮酚为潜在的候选药物。PI3K-AKT信号通路可能在复方黄柏液治疗Ⅲ度烧伤中发挥关键作用;分子对接表明槲皮素与AKT1结合最好。与对照组相比,槲皮素组成纤维细胞增殖、迁移侵袭均显著降低,p-PI3K、p-Akt蛋白表达也显著降低(P<0.05)。结论:复方黄柏液促进Ⅲ度烧伤患者肉芽组织形成的生物活性成分为槲皮素,潜在通路为PI3K-AKT信号通路,为复方黄柏液治疗Ⅲ度烧伤的研究提供了思路。
基金supported by grants from the National Natural Science Foundation (31872979, 31572366)the National Key Research and Development Program of China (2017YFD0502002)the National Basic Research Programs of China (2015CB943102)。
文摘Background: Intramuscular fat(IMF) content is a vital parameter for assessing pork quality. Increasing evidence has shown that microRNAs(miRNAs) play an important role in regulating porcine IMF deposition. Here, a novel miRNA implicated in porcine IMF adipogenesis was found, and its effect and regulatory mechanism were further explored with respect to intramuscular preadipocyte proliferation and differentiation.Results: By porcine adipose tissue miRNA sequencing analysis, we found that miR-146a-5p is a potential regulator of porcine IMF adipogenesis. Further studies showed that miR-146a-5p mimics inhibited porcine intramuscular preadipocyte proliferation and differentiation, while the miR-146a-5p inhibitor promoted cell proliferation and adipogenic differentiation. Mechanistically, miR-146a-5p suppressed cell proliferation by directly targeting SMAD family member 4(SMAD4) to attenuate TGF-β signaling. Moreover, miR-146a-5p inhibited the differentiation of intramuscular preadipocytes by targeting TNF receptor-associated factor 6(TRAF6) to weaken the AKT/mTORC1 signaling downstream of the TRAF6 pathway.Conclusions: MiR-146a-5p targets SMAD4 and TRAF6 to inhibit porcine intramuscular adipogenesis by attenuating TGF-β and AKT/mTORC1 signaling, respectively. These findings provide a novel miRNA biomarker for regulating intramuscular adipogenesis to promote pork quality.