期刊导航
期刊开放获取
cqvip
退出
期刊文献
+
任意字段
题名或关键词
题名
关键词
文摘
作者
第一作者
机构
刊名
分类号
参考文献
作者简介
基金资助
栏目信息
任意字段
题名或关键词
题名
关键词
文摘
作者
第一作者
机构
刊名
分类号
参考文献
作者简介
基金资助
栏目信息
检索
高级检索
期刊导航
共找到
1
篇文章
<
1
>
每页显示
20
50
100
已选择
0
条
导出题录
引用分析
参考文献
引证文献
统计分析
检索结果
已选文献
显示方式:
文摘
详细
列表
相关度排序
被引量排序
时效性排序
深度学习赋能的恶意代码攻防研究进展
被引量:
20
1
作者
冀甜甜
方滨兴
+4 位作者
崔翔
王忠儒
甘蕊灵
韩宇
余伟强
《计算机学报》
EI
CAS
CSCD
北大核心
2021年第4期669-695,共27页
深度学习赋能的恶意代码攻防研究已经成为网络安全领域中的热点问题.当前还没有针对这一热点问题的相关综述,为了及时跟进该领域的最新研究成果,本文首先分析并总结了恶意代码攻击的一般流程.基于该攻击流程,本文对深度学习的赋能攻击...
深度学习赋能的恶意代码攻防研究已经成为网络安全领域中的热点问题.当前还没有针对这一热点问题的相关综述,为了及时跟进该领域的最新研究成果,本文首先分析并总结了恶意代码攻击的一般流程.基于该攻击流程,本文对深度学习的赋能攻击点和赋能防御点进行了定位,将深度学习助力攻击的技术分为5类:(1)基于对抗样本生成的自动化免杀;(2)基于自然语言生成的自动化网络钓鱼;(3)基于神经网络的精准定位与打击;(4)基于生成对抗网络的流量模仿;(5)基于黑盒模型的攻击意图隐藏,并将深度学习助力防御的新型技术分为3类:(1)基于深度学习的恶意代码查杀;(2)自动化网络钓鱼识别;(3)深度学习赋能的恶意行为检测;其次,基于以上分类,本文对恶意代码攻防研究中的前沿技术进行了综述,并从技术原理、实际可行性、发展趋势等不同的角度对这些技术进行了深入剖析;再者,由于深度学习的伴生安全问题与其在恶意代码攻防领域的赋能安全问题紧密相关,本文对其中代表性的模型后门攻击与防御的相关技术也进行了关注;之后,本文分析并总结了当前深度学习赋能的恶意代码攻防研究领域中的主要研究方向,并对其未来的发展趋势进行了讨论;最后,深度学习赋能的恶意代码攻防研究才刚刚起步,基于恶意代码攻击链的更多可能的赋能攻击与防御点有待研究者继续探索和发掘.此外,深度学习助力恶意代码攻防的一大挑战是数据集的限制,如何建立有效、公开的数据集供研究者使用,这也是一个非常值得思考和研究的问题.
展开更多
关键词
恶意代码
深度学习
赋能攻击
赋能防御
攻击链
下载PDF
职称材料
题名
深度学习赋能的恶意代码攻防研究进展
被引量:
20
1
作者
冀甜甜
方滨兴
崔翔
王忠儒
甘蕊灵
韩宇
余伟强
机构
北京邮电大学网络空间安全学院可信分布式计算与服务教育部重点实验室
广州大学网络空间先进技术研究院
中国网络空间研究院
北京丁牛科技有限公司
出处
《计算机学报》
EI
CAS
CSCD
北大核心
2021年第4期669-695,共27页
基金
广东省重点领域研发计划(2019B010137004,2019B010136003)
北京邮电大学博士生创新基金资助项目(CX2019115)资助。
文摘
深度学习赋能的恶意代码攻防研究已经成为网络安全领域中的热点问题.当前还没有针对这一热点问题的相关综述,为了及时跟进该领域的最新研究成果,本文首先分析并总结了恶意代码攻击的一般流程.基于该攻击流程,本文对深度学习的赋能攻击点和赋能防御点进行了定位,将深度学习助力攻击的技术分为5类:(1)基于对抗样本生成的自动化免杀;(2)基于自然语言生成的自动化网络钓鱼;(3)基于神经网络的精准定位与打击;(4)基于生成对抗网络的流量模仿;(5)基于黑盒模型的攻击意图隐藏,并将深度学习助力防御的新型技术分为3类:(1)基于深度学习的恶意代码查杀;(2)自动化网络钓鱼识别;(3)深度学习赋能的恶意行为检测;其次,基于以上分类,本文对恶意代码攻防研究中的前沿技术进行了综述,并从技术原理、实际可行性、发展趋势等不同的角度对这些技术进行了深入剖析;再者,由于深度学习的伴生安全问题与其在恶意代码攻防领域的赋能安全问题紧密相关,本文对其中代表性的模型后门攻击与防御的相关技术也进行了关注;之后,本文分析并总结了当前深度学习赋能的恶意代码攻防研究领域中的主要研究方向,并对其未来的发展趋势进行了讨论;最后,深度学习赋能的恶意代码攻防研究才刚刚起步,基于恶意代码攻击链的更多可能的赋能攻击与防御点有待研究者继续探索和发掘.此外,深度学习助力恶意代码攻防的一大挑战是数据集的限制,如何建立有效、公开的数据集供研究者使用,这也是一个非常值得思考和研究的问题.
关键词
恶意代码
深度学习
赋能攻击
赋能防御
攻击链
Keywords
malware
deep
learning
ai
-
powered
attack
ai
-
powered
Defense
attack
ch
ai
n
分类号
TP309 [自动化与计算机技术—计算机系统结构]
下载PDF
职称材料
题名
作者
出处
发文年
被引量
操作
1
深度学习赋能的恶意代码攻防研究进展
冀甜甜
方滨兴
崔翔
王忠儒
甘蕊灵
韩宇
余伟强
《计算机学报》
EI
CAS
CSCD
北大核心
2021
20
下载PDF
职称材料
已选择
0
条
导出题录
引用分析
参考文献
引证文献
统计分析
检索结果
已选文献
上一页
1
下一页
到第
页
确定
用户登录
登录
IP登录
使用帮助
返回顶部