A series of TaVN-Ag nanocomposite films were deposited using a radio-frequency magnetron sputtering system. The micro- structure, mechanical properties, and tribological performance of the films were investigated. The...A series of TaVN-Ag nanocomposite films were deposited using a radio-frequency magnetron sputtering system. The micro- structure, mechanical properties, and tribological performance of the films were investigated. The results showed that TaVN-Ag films were composed of face-centered cubic (fcc) TaVN and fcc-Ag. With increasing Ag content, the hardness of TaVN-Ag composite films first in- creased and then decreased rapidly. The maximum hardness value was 31.4 GPa. At room temperature, the coefficient of friction (COF) of TaVN-Ag films decreased from 0.76 to 0.60 with increasing Ag content from 0 to 7.93at%. For the TaVN-Ag films with 7.93at% Ag, COF first increased and then decreased rapidly from 0.60 at 25℃ to 0.35 at 600℃, whereas the wear rate of the film increased continuously from 3.91 × 10^-7 to 19.1 × 10^7 mm3/(N·mm). The COF of the TaVN-Ag film with 7.93at% Ag was lower than that of the TaVN film, and their wear rates showed opposite trends with increasing temperature.展开更多
The films deposited at low temperature(LT-films) have increasingly attracted theoretical and technical interests since such films exhibit obvious difference in structure and performances compared to those deposited ...The films deposited at low temperature(LT-films) have increasingly attracted theoretical and technical interests since such films exhibit obvious difference in structure and performances compared to those deposited at room temperature.Studies on the tribological properties of LT-films are rarely reported in available literatures.In this paper,the structure,morphology and tribological properties of Ag films,deposited at LT(166 K) under various Ar pressures on AISI 440C steel substrates by arc ion plating(AIP),are studied by X-ray diffraction(XRD),atomic force microscopy(AFM) and a vacuum ball-on-disk tribometer,and compared with the Ag films deposited at RT(300 K).XRD results show that(200) preferred orientation of the films is promoted at LT and low Ar pressure.The Crystallite sizes are 70 nm-80 nm for LT-Ag films deposited at 0.2 Pa and 0.8 Pa and larger than 100 nm for LT-Ag films deposited at 0.4 Pa and 0.6 Pa,while they are 55 nm-60 nm for RT-Ag films deposited at 0.2 Pa-0.6 Pa and 37 nm for RT-Ag films deposited at 0.8 Pa.The surfaces of LT-Ag films are fibre-like at 0.6 Pa and 0.8 Pa,terrace-like at 0.4 Pa,and sphere-like at 0.2 Pa,while the surfaces of RT-Ag films are composed of sphere-like grains separated by voids.Wear tests reveal that,due to the compact microstructure LT-Ag films have better wear resistances than RT-Ag film.These results indicate that the microstructure and wear resistance of Ag films deposited by AIP can be improved by low temperature deposition.展开更多
为了研究Ag元素对Ti Si N薄膜结构及性能的影响,通过磁控溅射法制备了不同Ag含量的Ti Si N-Ag薄膜,采用EDS,XRD,XPS,TEM,CSM纳米压痕仪,UMT-2摩擦磨损仪和BRUKER三维形貌仪对薄膜的成分、微结构、力学性能和摩擦磨损性能进行了研究。结...为了研究Ag元素对Ti Si N薄膜结构及性能的影响,通过磁控溅射法制备了不同Ag含量的Ti Si N-Ag薄膜,采用EDS,XRD,XPS,TEM,CSM纳米压痕仪,UMT-2摩擦磨损仪和BRUKER三维形貌仪对薄膜的成分、微结构、力学性能和摩擦磨损性能进行了研究。结果表明:Ti Si N-Ag薄膜是由面心立方Ti N相、非晶Si3N4相和面心立方单质Ag相组成,单质Ag相的存在阻碍Ti N晶粒的生长;随Ag原子分数的增加,单质Ag相增加,导致Ti Si NAg薄膜的硬度和弹性模量逐渐下降;单质Ag相具有润滑作用,使薄膜硬度降低,磨痕中的硬质颗粒减少,摩擦系数从0.70降至0.39,磨损率也逐渐降低。展开更多
The changes in surface topography of thin conducting Ag films under high-density current condition are studied by optical and scanning tunnelling microscopy (STM). It is established that the loss of conductivity in sp...The changes in surface topography of thin conducting Ag films under high-density current condition are studied by optical and scanning tunnelling microscopy (STM). It is established that the loss of conductivity in specimens occurs through depletion of the material due to their overheating and electromigration process. It has been shown that the r.m.s. roughness, the fractal dimension of voids and the fractal dimension of the surface allow complete numerical characterization of surface topography changes in thin Ag films.展开更多
SnS and Ag films were deposited on glass sub-strates by vacuum thermal evaporation tech-nique successively, and then the films were annealed at different temperatures (0-300℃) in N2 atmosphere for 2h in order to obta...SnS and Ag films were deposited on glass sub-strates by vacuum thermal evaporation tech-nique successively, and then the films were annealed at different temperatures (0-300℃) in N2 atmosphere for 2h in order to obtain sil-ver-doped SnS ( SnS:Ag ) films. The phases of SnS:Ag films were analyzed by X-ray diffraction (XRD) system, which indicated that the films were polycrystalline SnS with orthogonal struc-ture, and the crystallites in the films were ex-clusively oriented along the(111)direction. With the increase of the annealing temperature, the carrier concentration and mobility of the films first rose and then dropped, whereas their re-sistivity and direct band gap Eg showed the contrary trend. At the annealing temperature of 260℃, the SnS:Ag films had the best properties: the direct bandgap was 1.3 eV, the carrier con-centration was up to 1.132 × 1017 cm-3, and the resistivity was about 3.1 Ωcm.展开更多
基金financially supported by the National Natural Science Foundation of China (Nos. 51374115 and 51574131)Postgraduate Research & Practice Innovation Program of Jiangsu Province (KYCX17-1832)Research Fund of Jiangsu University of Science and Technology (YCX16S-22)
文摘A series of TaVN-Ag nanocomposite films were deposited using a radio-frequency magnetron sputtering system. The micro- structure, mechanical properties, and tribological performance of the films were investigated. The results showed that TaVN-Ag films were composed of face-centered cubic (fcc) TaVN and fcc-Ag. With increasing Ag content, the hardness of TaVN-Ag composite films first in- creased and then decreased rapidly. The maximum hardness value was 31.4 GPa. At room temperature, the coefficient of friction (COF) of TaVN-Ag films decreased from 0.76 to 0.60 with increasing Ag content from 0 to 7.93at%. For the TaVN-Ag films with 7.93at% Ag, COF first increased and then decreased rapidly from 0.60 at 25℃ to 0.35 at 600℃, whereas the wear rate of the film increased continuously from 3.91 × 10^-7 to 19.1 × 10^7 mm3/(N·mm). The COF of the TaVN-Ag film with 7.93at% Ag was lower than that of the TaVN film, and their wear rates showed opposite trends with increasing temperature.
基金supported by National Basic Research Program of China(973 Project,Grant No.2007CB607601)National Natural Science Foundation of China (Grant No. 50301015)
文摘The films deposited at low temperature(LT-films) have increasingly attracted theoretical and technical interests since such films exhibit obvious difference in structure and performances compared to those deposited at room temperature.Studies on the tribological properties of LT-films are rarely reported in available literatures.In this paper,the structure,morphology and tribological properties of Ag films,deposited at LT(166 K) under various Ar pressures on AISI 440C steel substrates by arc ion plating(AIP),are studied by X-ray diffraction(XRD),atomic force microscopy(AFM) and a vacuum ball-on-disk tribometer,and compared with the Ag films deposited at RT(300 K).XRD results show that(200) preferred orientation of the films is promoted at LT and low Ar pressure.The Crystallite sizes are 70 nm-80 nm for LT-Ag films deposited at 0.2 Pa and 0.8 Pa and larger than 100 nm for LT-Ag films deposited at 0.4 Pa and 0.6 Pa,while they are 55 nm-60 nm for RT-Ag films deposited at 0.2 Pa-0.6 Pa and 37 nm for RT-Ag films deposited at 0.8 Pa.The surfaces of LT-Ag films are fibre-like at 0.6 Pa and 0.8 Pa,terrace-like at 0.4 Pa,and sphere-like at 0.2 Pa,while the surfaces of RT-Ag films are composed of sphere-like grains separated by voids.Wear tests reveal that,due to the compact microstructure LT-Ag films have better wear resistances than RT-Ag film.These results indicate that the microstructure and wear resistance of Ag films deposited by AIP can be improved by low temperature deposition.
文摘为了研究Ag元素对Ti Si N薄膜结构及性能的影响,通过磁控溅射法制备了不同Ag含量的Ti Si N-Ag薄膜,采用EDS,XRD,XPS,TEM,CSM纳米压痕仪,UMT-2摩擦磨损仪和BRUKER三维形貌仪对薄膜的成分、微结构、力学性能和摩擦磨损性能进行了研究。结果表明:Ti Si N-Ag薄膜是由面心立方Ti N相、非晶Si3N4相和面心立方单质Ag相组成,单质Ag相的存在阻碍Ti N晶粒的生长;随Ag原子分数的增加,单质Ag相增加,导致Ti Si NAg薄膜的硬度和弹性模量逐渐下降;单质Ag相具有润滑作用,使薄膜硬度降低,磨痕中的硬质颗粒减少,摩擦系数从0.70降至0.39,磨损率也逐渐降低。
文摘The changes in surface topography of thin conducting Ag films under high-density current condition are studied by optical and scanning tunnelling microscopy (STM). It is established that the loss of conductivity in specimens occurs through depletion of the material due to their overheating and electromigration process. It has been shown that the r.m.s. roughness, the fractal dimension of voids and the fractal dimension of the surface allow complete numerical characterization of surface topography changes in thin Ag films.
文摘SnS and Ag films were deposited on glass sub-strates by vacuum thermal evaporation tech-nique successively, and then the films were annealed at different temperatures (0-300℃) in N2 atmosphere for 2h in order to obtain sil-ver-doped SnS ( SnS:Ag ) films. The phases of SnS:Ag films were analyzed by X-ray diffraction (XRD) system, which indicated that the films were polycrystalline SnS with orthogonal struc-ture, and the crystallites in the films were ex-clusively oriented along the(111)direction. With the increase of the annealing temperature, the carrier concentration and mobility of the films first rose and then dropped, whereas their re-sistivity and direct band gap Eg showed the contrary trend. At the annealing temperature of 260℃, the SnS:Ag films had the best properties: the direct bandgap was 1.3 eV, the carrier con-centration was up to 1.132 × 1017 cm-3, and the resistivity was about 3.1 Ωcm.