An efficient high-order immersed interface method (IIM) is proposed to solve two-dimensional (2D) heat problems with fixed interfaces on Cartesian grids, which has the fourth-order accuracy in the maximum norm in ...An efficient high-order immersed interface method (IIM) is proposed to solve two-dimensional (2D) heat problems with fixed interfaces on Cartesian grids, which has the fourth-order accuracy in the maximum norm in both time and space directions. The space variable is discretized by a high-order compact (HOC) difference scheme with correction terms added at the irregular points. The time derivative is integrated by a Crank-Nicolson and alternative direction implicit (ADI) scheme. In this case, the time accuracy is just second-order. The Richardson extrapolation method is used to improve the time accuracy to fourth-order. The numerical results confirm the convergence order and the efficiency of the method.展开更多
In this paper, a two-dimensional nonlinear coupled Gray Scott system is simulated with a finite difference scheme and a finite volume technique. Pre and post-processing lead to a new solution called GSmFoam by underst...In this paper, a two-dimensional nonlinear coupled Gray Scott system is simulated with a finite difference scheme and a finite volume technique. Pre and post-processing lead to a new solution called GSmFoam by understandin<span>g geometry settings and mesh information. The concentration profile chan</span>ges over time, as does the intensity of the contour patterns. The OpenFoam solver gives you the confidence to compare the pattern result with efficient numerical algorithms on the Gray Scott model.展开更多
This research paper represents a numerical approximation to non-linear two-dimensional reaction diffusion equation from population genetics. Since various initial and boundary value problems exist in two-dimensional r...This research paper represents a numerical approximation to non-linear two-dimensional reaction diffusion equation from population genetics. Since various initial and boundary value problems exist in two-dimensional reaction-diffusion, phenomena are studied numerically by different numerical methods, here we use finite difference schemes to approximate the solution. Accuracy is studied in term of L2, L∞ and relative error norms by random selected grids along time levels for comparison with exact results. The test example demonstrates the accuracy, efficiency and versatility of the proposed schemes. It is shown that the numerical schemes give better solutions. Moreover, the schemes can be easily applied to a wide class of higher dimension nonlinear reaction diffusion equations with a little modification.展开更多
基金supported by the National Natural Science Foundation of China(No.51174236)the National Basic Research Program of China(973 Program)(No.2011CB606306)the Opening Project of State Key Laboratory of Porous Metal Materials(No.PMM-SKL-4-2012)
文摘An efficient high-order immersed interface method (IIM) is proposed to solve two-dimensional (2D) heat problems with fixed interfaces on Cartesian grids, which has the fourth-order accuracy in the maximum norm in both time and space directions. The space variable is discretized by a high-order compact (HOC) difference scheme with correction terms added at the irregular points. The time derivative is integrated by a Crank-Nicolson and alternative direction implicit (ADI) scheme. In this case, the time accuracy is just second-order. The Richardson extrapolation method is used to improve the time accuracy to fourth-order. The numerical results confirm the convergence order and the efficiency of the method.
文摘In this paper, a two-dimensional nonlinear coupled Gray Scott system is simulated with a finite difference scheme and a finite volume technique. Pre and post-processing lead to a new solution called GSmFoam by understandin<span>g geometry settings and mesh information. The concentration profile chan</span>ges over time, as does the intensity of the contour patterns. The OpenFoam solver gives you the confidence to compare the pattern result with efficient numerical algorithms on the Gray Scott model.
文摘This research paper represents a numerical approximation to non-linear two-dimensional reaction diffusion equation from population genetics. Since various initial and boundary value problems exist in two-dimensional reaction-diffusion, phenomena are studied numerically by different numerical methods, here we use finite difference schemes to approximate the solution. Accuracy is studied in term of L2, L∞ and relative error norms by random selected grids along time levels for comparison with exact results. The test example demonstrates the accuracy, efficiency and versatility of the proposed schemes. It is shown that the numerical schemes give better solutions. Moreover, the schemes can be easily applied to a wide class of higher dimension nonlinear reaction diffusion equations with a little modification.