The emerging development of connected and automated vehicles imposes a significant challenge on current vehicle control and transportation systems. This paper proposes a novel unified approach, Parallel Driving, a clo...The emerging development of connected and automated vehicles imposes a significant challenge on current vehicle control and transportation systems. This paper proposes a novel unified approach, Parallel Driving, a cloud-based cyberphysical-social systems(CPSS) framework aiming at synergizing connected automated driving. This study first introduces the CPSS and ACP-based intelligent machine systems. Then the parallel driving is proposed in the cyber-physical-social space,considering interactions among vehicles, human drivers, and information. Within the framework, parallel testing, parallel learning and parallel reinforcement learning are developed and concisely reviewed. Development on intelligent horizon(iHorizon)and its applications are also presented towards parallel horizon.The proposed parallel driving offers an ample solution for achieving a smooth, safe and efficient cooperation among connected automated vehicles with different levels of automation in future road transportation systems.展开更多
Lane detection is a fundamental aspect of most current advanced driver assistance systems(ADASs). A large number of existing results focus on the study of vision-based lane detection methods due to the extensive knowl...Lane detection is a fundamental aspect of most current advanced driver assistance systems(ADASs). A large number of existing results focus on the study of vision-based lane detection methods due to the extensive knowledge background and the low-cost of camera devices. In this paper, previous visionbased lane detection studies are reviewed in terms of three aspects, which are lane detection algorithms, integration, and evaluation methods. Next, considering the inevitable limitations that exist in the camera-based lane detection system, the system integration methodologies for constructing more robust detection systems are reviewed and analyzed. The integration methods are further divided into three levels, namely, algorithm, system,and sensor. Algorithm level combines different lane detection algorithms while system level integrates other object detection systems to comprehensively detect lane positions. Sensor level uses multi-modal sensors to build a robust lane recognition system. In view of the complexity of evaluating the detection system, and the lack of common evaluation procedure and uniform metrics in past studies, the existing evaluation methods and metrics are analyzed and classified to propose a better evaluation of the lane detection system. Next, a comparison of representative studies is performed. Finally, a discussion on the limitations of current lane detection systems and the future developing trends toward an Artificial Society, Computational experiment-based parallel lane detection framework is proposed.展开更多
These days' smart buildings have high intensive information and massive operational parameters, not only extensive power consumption. With the development of computation capability and future 5 G, the ACP theory(i...These days' smart buildings have high intensive information and massive operational parameters, not only extensive power consumption. With the development of computation capability and future 5 G, the ACP theory(i.e., artificial systems,computational experiments, and parallel computing) will play a much more crucial role in modeling and control of complex systems like commercial and academic buildings. The necessity of making accurate predictions of energy consumption out of a large number of operational parameters has become a crucial problem in smart buildings. Previous attempts have been made to seek energy consumption predictions based on historical data in buildings. However, there are still questions about parallel building consumption prediction mechanism using a large number of operational parameters. This article proposes a novel hybrid deep learning prediction approach that utilizes long short-term memory as an encoder and gated recurrent unit as a decoder in conjunction with ACP theory. The proposed approach is tested and validated by real-world dataset, and the results outperformed traditional predictive models compared in this paper.展开更多
文摘The emerging development of connected and automated vehicles imposes a significant challenge on current vehicle control and transportation systems. This paper proposes a novel unified approach, Parallel Driving, a cloud-based cyberphysical-social systems(CPSS) framework aiming at synergizing connected automated driving. This study first introduces the CPSS and ACP-based intelligent machine systems. Then the parallel driving is proposed in the cyber-physical-social space,considering interactions among vehicles, human drivers, and information. Within the framework, parallel testing, parallel learning and parallel reinforcement learning are developed and concisely reviewed. Development on intelligent horizon(iHorizon)and its applications are also presented towards parallel horizon.The proposed parallel driving offers an ample solution for achieving a smooth, safe and efficient cooperation among connected automated vehicles with different levels of automation in future road transportation systems.
文摘Lane detection is a fundamental aspect of most current advanced driver assistance systems(ADASs). A large number of existing results focus on the study of vision-based lane detection methods due to the extensive knowledge background and the low-cost of camera devices. In this paper, previous visionbased lane detection studies are reviewed in terms of three aspects, which are lane detection algorithms, integration, and evaluation methods. Next, considering the inevitable limitations that exist in the camera-based lane detection system, the system integration methodologies for constructing more robust detection systems are reviewed and analyzed. The integration methods are further divided into three levels, namely, algorithm, system,and sensor. Algorithm level combines different lane detection algorithms while system level integrates other object detection systems to comprehensively detect lane positions. Sensor level uses multi-modal sensors to build a robust lane recognition system. In view of the complexity of evaluating the detection system, and the lack of common evaluation procedure and uniform metrics in past studies, the existing evaluation methods and metrics are analyzed and classified to propose a better evaluation of the lane detection system. Next, a comparison of representative studies is performed. Finally, a discussion on the limitations of current lane detection systems and the future developing trends toward an Artificial Society, Computational experiment-based parallel lane detection framework is proposed.
文摘These days' smart buildings have high intensive information and massive operational parameters, not only extensive power consumption. With the development of computation capability and future 5 G, the ACP theory(i.e., artificial systems,computational experiments, and parallel computing) will play a much more crucial role in modeling and control of complex systems like commercial and academic buildings. The necessity of making accurate predictions of energy consumption out of a large number of operational parameters has become a crucial problem in smart buildings. Previous attempts have been made to seek energy consumption predictions based on historical data in buildings. However, there are still questions about parallel building consumption prediction mechanism using a large number of operational parameters. This article proposes a novel hybrid deep learning prediction approach that utilizes long short-term memory as an encoder and gated recurrent unit as a decoder in conjunction with ACP theory. The proposed approach is tested and validated by real-world dataset, and the results outperformed traditional predictive models compared in this paper.