期刊文献+
共找到1篇文章
< 1 >
每页显示 20 50 100
蚁群算法的收敛速度分析 被引量:72
1
作者 黄翰 郝志峰 +1 位作者 吴春国 秦勇 《计算机学报》 EI CSCD 北大核心 2007年第8期1344-1353,共10页
蚁群算法(ACO)作为一类新型的机器学习技术,已经广泛用于组合优化问题的求解,同时也应用于工业工程的优化设计.相对于遗传算法(GA),蚁群算法的理论研究在国内外均起步较晚,特别是收敛速度的分析理论是该领域急待解决的第一大公开问题.... 蚁群算法(ACO)作为一类新型的机器学习技术,已经广泛用于组合优化问题的求解,同时也应用于工业工程的优化设计.相对于遗传算法(GA),蚁群算法的理论研究在国内外均起步较晚,特别是收敛速度的分析理论是该领域急待解决的第一大公开问题.文中的研究内容主要是针对这一公开问题而开展的.根据蚁群算法的特性,该研究基于吸收态Markov过程的数学模型,提出了蚁群算法的收敛速度分析理论.作者给出了估算蚁群算法期望收敛时间的几个理论方法,以分析蚁群算法的收敛速度,并结合著名的ACS算法作了具体的案例研究.基于该文提出的收敛速度分析理论,作者还提出ACO-难和ACO-易两类问题的界定方法;最后,利用ACS算法求解TSP问题的实验数据,验证了文中提出的分析结论,得出了初步的算法设计指导原则. 展开更多
关键词 蚁群算法 吸收态Markov过程 期望收敛时间aco-难易问题 优化路径
下载PDF
上一页 1 下一页 到第
使用帮助 返回顶部