Thermal deformation of aluminum alloy casting materials for manufacturing the tire mold was numerically investigated.The AC7A and AC4C casting material was selected as casting material and the metal casting device was...Thermal deformation of aluminum alloy casting materials for manufacturing the tire mold was numerically investigated.The AC7A and AC4C casting material was selected as casting material and the metal casting device was used in order to manufacture the mold product of automobile tire in the actual industrial field.The temperature distribution and the cooling time of casting materials were numerically calculated by finite element analysis (FEA).Also,the thermal deformation such as displacement and stress distribution was calculated from the temperature results.The thermal deformation was closely related to the temperature difference between the surface and inside of the casting.The numerical analysis results reveal that the thermal deformation of AC7A casting material is higher than that of AC4C casting material.Also,the thermal deformation results at the central part are larger than that on the side of casting because of the shrinkage caused by the cooling speed difference.展开更多
MgAl2O4 particle-reinforced AC4C based alloy composites were fabricated by the stirring-casting method. The effects of the average sizes and the size distributions of MgAl2O4 particles on the dispersibility were inves...MgAl2O4 particle-reinforced AC4C based alloy composites were fabricated by the stirring-casting method. The effects of the average sizes and the size distributions of MgAl2O4 particles on the dispersibility were investigated, and the microstructures, strength, and fatigue properties of MgAl2O4 particle-reinforced AC4C based alloy composites were evaluated. Tensile strength in the MgAl2O4 particle-reinforced AC4C based alloy composite was increased by using the classified particles. The fatigue limit at 107 cycles in the MgA1204 particle-reinforced AC4C-Cu composite increased by 27% compared to the unreinforced alloy at 250 ~C. Dislocations were observed in the matrix around the MgAl204 particle which resulted from the mismatch of thermal expansion coefficients between MgAl2O4 and Al, and resisted failure and caused fatigue cracks to propagate around the MgAl2O4 particles, resulting in extensive crack deflection and crack bowing which contributed to the improvement of fatigue strength.展开更多
Background:N-acetyltransferase 10(NAT10)is the only enzyme known tomediate the N4-acetylcytidine(ac4C)modification of mRNA and is crucial formRNA stability and translation efficiency.However,its role in cancer develop...Background:N-acetyltransferase 10(NAT10)is the only enzyme known tomediate the N4-acetylcytidine(ac4C)modification of mRNA and is crucial formRNA stability and translation efficiency.However,its role in cancer development and prognosis has not yet been explored.This study aimed to examine the possible role of NAT10 in colon cancer.Methods:The expression levels ofNAT10were evaluated by immunohistochemical analyses with a colon cancer tissue microarray,and its prognostic value in patients was further analyzed.Quantitative real-time polymerase chain reaction(qRT-PCR)and Western blotting were performed to analyze NAT10 expression in harvested colon cancer tissues and cell lines.Stable NAT10-knockdown and NAT10-overexpressing colon cancer cell lines were constructed using lentivirus.The biological functions of NAT10 in colon cancer cell lines were analyzed in vitro by Cell Counting Kit-8(CCK-8),wound healing,Transwell,cell cycle,and ferroptosis assays.Xenograft models were used to analyze the effect of NAT10 on the tumorigenesis and metastasis of colon cancer cells in vivo.Dot blotting,acetylated RNA immunoprecipitation-qPCR,and RNA stability analyses were performed to explore the mechanism by which NAT10 functions in colon cancer progression.Results:NAT10 was upregulated in colon cancer tissues and various colon cancer cell lines.This increased NAT10 expression was associated with shorter patient survival.Knockdown of NAT10 in two colon cancer cell lines(HT-29 and LoVo)impaired the proliferation,migration,invasion,tumor formation and metastasis of these cells,whereas overexpression of NAT10 promoted these abilities.Further analysis revealed that NAT10 exerted a strong effect on the mRNA stability and expression of ferroptosis suppressor protein 1(FSP1)in HT-29 and LoVo cells.In these cells,FSP1 mRNA was found to be modified by ac4C acetylation,and this epigenetic modification was associated with the inhibition of ferroptosis.Conclusions:Our study revealed that NAT10 plays a critical role in colon cancer development b展开更多
基金Project supported by Research Funds from Chosun University(2009),Korea
文摘Thermal deformation of aluminum alloy casting materials for manufacturing the tire mold was numerically investigated.The AC7A and AC4C casting material was selected as casting material and the metal casting device was used in order to manufacture the mold product of automobile tire in the actual industrial field.The temperature distribution and the cooling time of casting materials were numerically calculated by finite element analysis (FEA).Also,the thermal deformation such as displacement and stress distribution was calculated from the temperature results.The thermal deformation was closely related to the temperature difference between the surface and inside of the casting.The numerical analysis results reveal that the thermal deformation of AC7A casting material is higher than that of AC4C casting material.Also,the thermal deformation results at the central part are larger than that on the side of casting because of the shrinkage caused by the cooling speed difference.
文摘MgAl2O4 particle-reinforced AC4C based alloy composites were fabricated by the stirring-casting method. The effects of the average sizes and the size distributions of MgAl2O4 particles on the dispersibility were investigated, and the microstructures, strength, and fatigue properties of MgAl2O4 particle-reinforced AC4C based alloy composites were evaluated. Tensile strength in the MgAl2O4 particle-reinforced AC4C based alloy composite was increased by using the classified particles. The fatigue limit at 107 cycles in the MgA1204 particle-reinforced AC4C-Cu composite increased by 27% compared to the unreinforced alloy at 250 ~C. Dislocations were observed in the matrix around the MgAl204 particle which resulted from the mismatch of thermal expansion coefficients between MgAl2O4 and Al, and resisted failure and caused fatigue cracks to propagate around the MgAl2O4 particles, resulting in extensive crack deflection and crack bowing which contributed to the improvement of fatigue strength.
基金National Natural Science Foundation of China,Grant/Award Numbers:81902386,81972869,82002479The Natural Science Foundation of Jiangsu Province,Grant/Award Numbers:BK20211065,BK20200179+2 种基金China Postdoctoral Science Foundation,Grant/Award Number:2021M700547Youth Talent Science and Technology Project of Changzhou Health Commission,Grant/Award Number:QN202103The open fund of state key laboratory of Pharmaceutical Biotechnology,Nanjing University,China,Grant/Award Number:KF-202203。
文摘Background:N-acetyltransferase 10(NAT10)is the only enzyme known tomediate the N4-acetylcytidine(ac4C)modification of mRNA and is crucial formRNA stability and translation efficiency.However,its role in cancer development and prognosis has not yet been explored.This study aimed to examine the possible role of NAT10 in colon cancer.Methods:The expression levels ofNAT10were evaluated by immunohistochemical analyses with a colon cancer tissue microarray,and its prognostic value in patients was further analyzed.Quantitative real-time polymerase chain reaction(qRT-PCR)and Western blotting were performed to analyze NAT10 expression in harvested colon cancer tissues and cell lines.Stable NAT10-knockdown and NAT10-overexpressing colon cancer cell lines were constructed using lentivirus.The biological functions of NAT10 in colon cancer cell lines were analyzed in vitro by Cell Counting Kit-8(CCK-8),wound healing,Transwell,cell cycle,and ferroptosis assays.Xenograft models were used to analyze the effect of NAT10 on the tumorigenesis and metastasis of colon cancer cells in vivo.Dot blotting,acetylated RNA immunoprecipitation-qPCR,and RNA stability analyses were performed to explore the mechanism by which NAT10 functions in colon cancer progression.Results:NAT10 was upregulated in colon cancer tissues and various colon cancer cell lines.This increased NAT10 expression was associated with shorter patient survival.Knockdown of NAT10 in two colon cancer cell lines(HT-29 and LoVo)impaired the proliferation,migration,invasion,tumor formation and metastasis of these cells,whereas overexpression of NAT10 promoted these abilities.Further analysis revealed that NAT10 exerted a strong effect on the mRNA stability and expression of ferroptosis suppressor protein 1(FSP1)in HT-29 and LoVo cells.In these cells,FSP1 mRNA was found to be modified by ac4C acetylation,and this epigenetic modification was associated with the inhibition of ferroptosis.Conclusions:Our study revealed that NAT10 plays a critical role in colon cancer development b