Fuel cell using borohydride as the fuel has received much attention. AB5-type hydrogen storage alloy used as the anodic material instead of noble metals has been investigated. In order to restrain the generation of hy...Fuel cell using borohydride as the fuel has received much attention. AB5-type hydrogen storage alloy used as the anodic material instead of noble metals has been investigated. In order to restrain the generation of hydrogen and enhance the utilization of borohydride, Ti/Zr metal powders has been added into the parent LmNi4.78Mn0.22 (where Lm is La-richened mischmetal) alloy (LNM) by ball milling and heat treatment methods. It is found that the addition of Ti/Zr metal powders lowers the electrochemical catalytic activity of the electrodes, at the same time, restrains the generation of hydrogen and enhances the utilization of the fuel. All the results show that the hydrogen generation rate or the utilization of the fuel is directly relative to the electrochemical catalytic activity or the discharge capability of the electrodes. The utilization of the fuel increases with discharge current density. It is very important to find a balance between the discharge capability and the utilization of the fuel.展开更多
La0.7Ce0.3Ni3.75Mn0.35Al0.15Cu0.75-xFex (x=0-0.20) hydrogen storage alloys were synthesized by induction melting and subsequent annealing treatment, and phase structure and electrochemical characteristics were inves...La0.7Ce0.3Ni3.75Mn0.35Al0.15Cu0.75-xFex (x=0-0.20) hydrogen storage alloys were synthesized by induction melting and subsequent annealing treatment, and phase structure and electrochemical characteristics were investigated. All alloys consist of a single LaNi5 phase with CaCu5 structure, and the lattice constant a and the cell volume (V) of the LaNi5 phase increase with increasing x value. The maximum discharge capacity gradually decreases from 319.0 mA?h/g (x=0) to 291.9 mA?h/g (x=0.20) with the increase in x value. The high-rate dischargeability at the discharge current density of 1200 mA/g decreases monotonically from 53.1% (x=0) to 44.2% (x=0.20). The cycling stability increases with increasing x from 0 to 0.20, which is mainly ascribed to the improvement of the pulverization resistance.展开更多
AB_(5)-type toxins are a group of secreted protein toxins that are central virulence factors for bacterial pathogens such as Shigella dysenteriae,Vibrio cholerae,Bordetella pertussis,and certain lineages of pathogenic...AB_(5)-type toxins are a group of secreted protein toxins that are central virulence factors for bacterial pathogens such as Shigella dysenteriae,Vibrio cholerae,Bordetella pertussis,and certain lineages of pathogenic Escherichia coli and Salmonella enterica.AB_(5) toxins are composed of an active(A)subunit that manipulates host cell biology in complex with a pentameric binding/delivery(B)subunit that mediates the toxin’s entry into host cells and its subsequent intracellular trafficking.Broadly speaking,all known AB_(5)-type toxins adopt similar structural architectures and employ similar mechanisms of binding,entering and trafficking within host cells.Despite this,there is a remarkable amount of diversity amongst AB_(5)-type toxins;this includes different toxin families with unrelated activities,as well as variation within families that can have profound functional consequences.In this review,we discuss the diversity that exists amongst characterized AB_(5)-type toxins,with an emphasis on the genetic and functional variability within AB_(5) toxin families,how this may have evolved,and its impact on human disease.展开更多
In order to further reduce the cost of AB5 type rare earth-based hydrogen storage alloy, a low-Co AB5 type hydrogen storage alloy were by substituting Co with Cu and Fe.The characteristics of these alloys have been in...In order to further reduce the cost of AB5 type rare earth-based hydrogen storage alloy, a low-Co AB5 type hydrogen storage alloy were by substituting Co with Cu and Fe.The characteristics of these alloys have been investigated by means of XRD, PCT, and measurement of electrochemical capacity and cycle life.The test results show that the effect of these two kinds of substituting elements on discharge capacity is Cu > Fe, and the cycle life is on the contrary.Both of them have no distinct influence on activity speed, but activity speed increases with the decrease of Co.By the order way, the high discharge rate characteristics rise with the addition of Cu and decreasing of Co.展开更多
文摘Fuel cell using borohydride as the fuel has received much attention. AB5-type hydrogen storage alloy used as the anodic material instead of noble metals has been investigated. In order to restrain the generation of hydrogen and enhance the utilization of borohydride, Ti/Zr metal powders has been added into the parent LmNi4.78Mn0.22 (where Lm is La-richened mischmetal) alloy (LNM) by ball milling and heat treatment methods. It is found that the addition of Ti/Zr metal powders lowers the electrochemical catalytic activity of the electrodes, at the same time, restrains the generation of hydrogen and enhances the utilization of the fuel. All the results show that the hydrogen generation rate or the utilization of the fuel is directly relative to the electrochemical catalytic activity or the discharge capability of the electrodes. The utilization of the fuel increases with discharge current density. It is very important to find a balance between the discharge capability and the utilization of the fuel.
基金Project (51001043) supported by the National Natural Science Foundation of ChinaProject (NCET2011) supported by Program for New Century Excellent Talents in University, China+4 种基金Project (201104390) supported by China Postdoctoral Science Special FoundationProject (20100470990) supported by China Postdoctoral Science FoundationProject (2012IRTSTHN007) supported by Program for Innovative Research Team (in Science and Technology) in the University of Henan Province, ChinaProject (2011J1003) supported by Baotou Science and Technology Project, ChinaProject (B2010-13) supported by the Doctoral Foundation of Henan Polytechnic University, China
文摘La0.7Ce0.3Ni3.75Mn0.35Al0.15Cu0.75-xFex (x=0-0.20) hydrogen storage alloys were synthesized by induction melting and subsequent annealing treatment, and phase structure and electrochemical characteristics were investigated. All alloys consist of a single LaNi5 phase with CaCu5 structure, and the lattice constant a and the cell volume (V) of the LaNi5 phase increase with increasing x value. The maximum discharge capacity gradually decreases from 319.0 mA?h/g (x=0) to 291.9 mA?h/g (x=0.20) with the increase in x value. The high-rate dischargeability at the discharge current density of 1200 mA/g decreases monotonically from 53.1% (x=0) to 44.2% (x=0.20). The cycling stability increases with increasing x from 0 to 0.20, which is mainly ascribed to the improvement of the pulverization resistance.
基金supported by a start-up grant provided by the Uni-versity of Alberta Faculty of Science(to C.C.F.)a Natural Sciences and Engineering Research Council of Canada(NSERC)Discovery Grant(Grant number:RGPIN-2020-03964 to C.C.F.).
文摘AB_(5)-type toxins are a group of secreted protein toxins that are central virulence factors for bacterial pathogens such as Shigella dysenteriae,Vibrio cholerae,Bordetella pertussis,and certain lineages of pathogenic Escherichia coli and Salmonella enterica.AB_(5) toxins are composed of an active(A)subunit that manipulates host cell biology in complex with a pentameric binding/delivery(B)subunit that mediates the toxin’s entry into host cells and its subsequent intracellular trafficking.Broadly speaking,all known AB_(5)-type toxins adopt similar structural architectures and employ similar mechanisms of binding,entering and trafficking within host cells.Despite this,there is a remarkable amount of diversity amongst AB_(5)-type toxins;this includes different toxin families with unrelated activities,as well as variation within families that can have profound functional consequences.In this review,we discuss the diversity that exists amongst characterized AB_(5)-type toxins,with an emphasis on the genetic and functional variability within AB_(5) toxin families,how this may have evolved,and its impact on human disease.
文摘In order to further reduce the cost of AB5 type rare earth-based hydrogen storage alloy, a low-Co AB5 type hydrogen storage alloy were by substituting Co with Cu and Fe.The characteristics of these alloys have been investigated by means of XRD, PCT, and measurement of electrochemical capacity and cycle life.The test results show that the effect of these two kinds of substituting elements on discharge capacity is Cu > Fe, and the cycle life is on the contrary.Both of them have no distinct influence on activity speed, but activity speed increases with the decrease of Co.By the order way, the high discharge rate characteristics rise with the addition of Cu and decreasing of Co.