以改变储热器中热量的分配为基础,建立了先进绝热压缩空气储能(Advanced Adiabatic Compressed Air EnergyStorage,简称AA-CAES)系统的冷热电联供模型。推导了系统的主要参数表达式,并以某建筑冷热电负荷的变化情况为例,对比了AA-CAES...以改变储热器中热量的分配为基础,建立了先进绝热压缩空气储能(Advanced Adiabatic Compressed Air EnergyStorage,简称AA-CAES)系统的冷热电联供模型。推导了系统的主要参数表达式,并以某建筑冷热电负荷的变化情况为例,对比了AA-CAES系统的供电模型与冷热电联供模型的能量输出特性。结果表明,相比供电模型:冷热电联供模型有最大发电量时,同时可最大输出0.62单位的制冷量和1.1单位的供热量(最大发电量为单位1);通过调节储热器的热量分配,可改变冷热电联供模型冷热电的输出比例,对负荷变动的应对性更好。展开更多
为了验证和分析风电与先进绝热压缩空气储能(Advanced Adiabatic Compressed Air Energy Storage,简称AACAES)集成系统用于分布式供能的能量输出特性,建立了以风能储能技术为基础的分布式能源系统模型,从热力学角度推导了与能量输出相...为了验证和分析风电与先进绝热压缩空气储能(Advanced Adiabatic Compressed Air Energy Storage,简称AACAES)集成系统用于分布式供能的能量输出特性,建立了以风能储能技术为基础的分布式能源系统模型,从热力学角度推导了与能量输出相关的参数表达式,得到了分布式能源系统冷热电输出特性与储热器中热量利用的关联性,并以某写字楼为例,分析了分布式能源系统的优势。结果表明:随系统供热量的增加,系统供电量减少,制冷量增加,且能量输出总量增加;在满足冷量和热量需求的前提下,相比供电模型,分布式供能模型有更多的供电量,而在能量输出相同的条件下,分布式能源系统模型更节能。展开更多
文摘以改变储热器中热量的分配为基础,建立了先进绝热压缩空气储能(Advanced Adiabatic Compressed Air EnergyStorage,简称AA-CAES)系统的冷热电联供模型。推导了系统的主要参数表达式,并以某建筑冷热电负荷的变化情况为例,对比了AA-CAES系统的供电模型与冷热电联供模型的能量输出特性。结果表明,相比供电模型:冷热电联供模型有最大发电量时,同时可最大输出0.62单位的制冷量和1.1单位的供热量(最大发电量为单位1);通过调节储热器的热量分配,可改变冷热电联供模型冷热电的输出比例,对负荷变动的应对性更好。
文摘为了验证和分析风电与先进绝热压缩空气储能(Advanced Adiabatic Compressed Air Energy Storage,简称AACAES)集成系统用于分布式供能的能量输出特性,建立了以风能储能技术为基础的分布式能源系统模型,从热力学角度推导了与能量输出相关的参数表达式,得到了分布式能源系统冷热电输出特性与储热器中热量利用的关联性,并以某写字楼为例,分析了分布式能源系统的优势。结果表明:随系统供热量的增加,系统供电量减少,制冷量增加,且能量输出总量增加;在满足冷量和热量需求的前提下,相比供电模型,分布式供能模型有更多的供电量,而在能量输出相同的条件下,分布式能源系统模型更节能。