Association mapping is a powerful approach for exploring the molecular basis of phenotypic variations in plants. A peanut (Arachis hypogaea L.) mini-core collection in China comprising 298 accessions was genotyped u...Association mapping is a powerful approach for exploring the molecular basis of phenotypic variations in plants. A peanut (Arachis hypogaea L.) mini-core collection in China comprising 298 accessions was genotyped using lo9 simple sequence repeat (SSR) markers, which identified 554 SSR alleles and phenotyped for 15 agronomic traits in three different environments, exhibiting abundant genetic and phenotypic diversity within the panel. A model-based structure analysis assigned all accessions to three groups. Most of the accessions had the relative kinship of less than o.05, indicating that there were no or weak relationships between accessions of the mini- core collection. For 15 agronomic traits in the peanut panel, generally the Q + K model exhibited the best performance to eliminate the false associated positives compared to the Q model and the general linear model-simple model. In total, 89 SSR alleles were identified to be associated with 15 agronomic traits of three environments by the Q+K model-based association analysis. Of these, eight alleles were repeatedly detected in two or three environments, and 15 alleles were commonly detected to be associated with multiple agronomic traits. Simple sequence repeat allelic effects confirmed significant differences between different genotypes of these repeatedly detected markers. Our results demonstrate the great potential of integrating the association analysis and marker-assisted breeding by utilizing the peanut mini-core collection.展开更多
Molecular genetic maps of crop species can be used in a variety of ways in breeding and genomic research such as identification and mapping of genes and quantitative trait loci (QTLs) for morphological, physiologica...Molecular genetic maps of crop species can be used in a variety of ways in breeding and genomic research such as identification and mapping of genes and quantitative trait loci (QTLs) for morphological, physiological and economic traits of crop species. However, a comprehensive genetic linkage map for cultivated peanut has not yet been developed due to the extremely low frequency of DNA polymorphism in cultivated peanut. In this study, 142 recombinant inbred lines (RILs) derived from a cross between Yueyou 13 and Zhenzhuhei were used as mapping population in peanut (Arachis hypogaea L.). A total 652 pairs of genomic-SSR primer and 392 pairs of EST-SSR primer were used to detect the polymorphisms between the two parents. 141 SSR primer pairs, 127 genomic-SSR and 14 EST-SSR ones, which can be used to detect polymorphisms between the two parents, were selected to analyze the RILs population. Thus, a linkage genetic map which consists of 131 SSR loci in 20 linkage groups, with a coverage of 679 cM and an average of 6.12 cM of inter-maker distance was constructed. The putative functions of 12 EST-SSR markers located on the map were analyzed. Eleven showed homology to gene sequences deposited in GenBank. This is the first report of construction of a comprehensive genetic map with SSR markers in peanut (Arachis hypogaea L.). The map presented here will provide a genetic framework for mapping the qualitative and quantitative trait in peanut.展开更多
Objective: To investigate the change in total phenolic compounds, antioxidant activity,and resveratrol content of five different germinated peanut cultivars.Methods: The germinated sprouts of five peanut cultivars(Kal...Objective: To investigate the change in total phenolic compounds, antioxidant activity,and resveratrol content of five different germinated peanut cultivars.Methods: The germinated sprouts of five peanut cultivars(Kalasin1, Kalasin2, Konkaen,Konkaen4, and Tainan9) were extracted with 80% ethanol and collected as crude extract.The antioxidant capacities were determined with 2,2-diphenyl-1-picrylhydrazyl and ferric ion reducing antioxidant power method.The total phenolic compound was measured using the Folin–Ciocalteau assay.The qualification and quantification of resveratrol was performed by high performance liquid chromatography method.Results: Among the five cultivars, a three-day germination of Kalasin1 showed the highest phenolic content [(40.67 ± 2.62) mg gallic acid/g dry weight], expressed the highest 2,2-diphenyl-1-picrylhydrazyl antioxidant value [(80.51 ± 1.47) mmol/L Trolox/g dry weight], and ferric ion reducing antioxidant power antioxidant value [(171.33 ± 8.59)mmol/L ascorbic acid/g dry weight].However, the high performance liquid chromatography result of Kalasin2 significantly increased to the highest resveratrol content of(6.44 ± 1.26) mg/g dry weight on the second day of germination.Conclusions: The variation of phytochemical content in the peanut sprout is due to the effect of the peanut cultivar and the germination period.展开更多
After pre-culture and treatment of osmosis, cotyledons of immature peanut (Arachis hypogaea L.) zygotic embryos were transformed via particle bombardment with a plasmid containing a chimeric hph gene conferring resist...After pre-culture and treatment of osmosis, cotyledons of immature peanut (Arachis hypogaea L.) zygotic embryos were transformed via particle bombardment with a plasmid containing a chimeric hph gene conferring resistance to hygromycin and a chimeric intron-gus gene. Selection for hygromycin resistant calluses and somatic embryos was initiated at 10th d post-bombardment on medium containing 10-25 mg/L hygromycin. Under continuous selection, hygromycin resistant plantlets were regenerated from somatic embryos and were recovered from nearly 1.6% of the bombarded cotyledons. The presence and integration of foreign DNA in regenerated hygromycin resistant plants was confirmed by PCR (polymerase chain reaction) for the intron-gus gene and by Southern hybridization of the hph gene. GUS enzyme activity was detected in leaflets from transgenic plants but not from control, non-transformed plants. The production of transgenic plants are mainly based on a newly improved somatic embryogenesis regeneration system developed by us.展开更多
The growth and yield of peanut are negatively affected by continuous cropping.Arbuscular mycorrhizal fungi(AMF)and calcium ions(Ca^(2+))have been used to improve stress resistance in other plants,but little is known a...The growth and yield of peanut are negatively affected by continuous cropping.Arbuscular mycorrhizal fungi(AMF)and calcium ions(Ca^(2+))have been used to improve stress resistance in other plants,but little is known about their roles in peanut seedling growth under continuous cropping.This study investigated the possible roles of the AMF Glomus mosseae combined with exogenous Ca^(2+)in improving the physiological responses of peanut seedlings under continuous cropping.G.mosseae combined with exogenous Ca^(2+)can enhance plant biomass,Ca^(2+)level,and total chlorophyll content.Under exogenous Ca^(2+)application,the F_v/F_m in arbuscular mycorrhizal(AM)plant leaves was higher than that in the control plants when they were exposed to high irradiance levels.The peroxidase,superoxide dismutase,and catalase activities in AM plant leaves also reached their maximums,and accordingly,the malondialdehyde content was the lowest compared to other treatments.Additionally,root activity,and content of total phenolics and flavonoids were significantly increased in AM plant roots treated by Ca^(2+)compared to either G.mosseae inoculation or Ca^(2+)treatment alone.Transcription levels of AhCaM,AhCDPK,AhRAM1,and AhRAM2 were significantly improved in AM plant roots under exogenous Ca^(2+)treatment.This implied that exogenous Ca^(2+)might be involved in the regulation of G.mosseae colonization of peanut plants,and in turn,AM symbiosis might activate the Ca^(2+)signal transduction pathway.The combination of AMF and Ca^(2+)benefitted plant growth and development under continuous cropping,suggesting that it is a promising method to cope with the stress caused by continuous cropping.展开更多
基金supported by the National Basic Research Program of China (2011CB109300)Crop Germplasm Program (NB09‐2130135‐4)the National Science Fund of China (31271764)
文摘Association mapping is a powerful approach for exploring the molecular basis of phenotypic variations in plants. A peanut (Arachis hypogaea L.) mini-core collection in China comprising 298 accessions was genotyped using lo9 simple sequence repeat (SSR) markers, which identified 554 SSR alleles and phenotyped for 15 agronomic traits in three different environments, exhibiting abundant genetic and phenotypic diversity within the panel. A model-based structure analysis assigned all accessions to three groups. Most of the accessions had the relative kinship of less than o.05, indicating that there were no or weak relationships between accessions of the mini- core collection. For 15 agronomic traits in the peanut panel, generally the Q + K model exhibited the best performance to eliminate the false associated positives compared to the Q model and the general linear model-simple model. In total, 89 SSR alleles were identified to be associated with 15 agronomic traits of three environments by the Q+K model-based association analysis. Of these, eight alleles were repeatedly detected in two or three environments, and 15 alleles were commonly detected to be associated with multiple agronomic traits. Simple sequence repeat allelic effects confirmed significant differences between different genotypes of these repeatedly detected markers. Our results demonstrate the great potential of integrating the association analysis and marker-assisted breeding by utilizing the peanut mini-core collection.
基金the National Natural Science Foundation of China(30571179)National 863 Program of China(2006AA0Z156,2006AA10A115)
文摘Molecular genetic maps of crop species can be used in a variety of ways in breeding and genomic research such as identification and mapping of genes and quantitative trait loci (QTLs) for morphological, physiological and economic traits of crop species. However, a comprehensive genetic linkage map for cultivated peanut has not yet been developed due to the extremely low frequency of DNA polymorphism in cultivated peanut. In this study, 142 recombinant inbred lines (RILs) derived from a cross between Yueyou 13 and Zhenzhuhei were used as mapping population in peanut (Arachis hypogaea L.). A total 652 pairs of genomic-SSR primer and 392 pairs of EST-SSR primer were used to detect the polymorphisms between the two parents. 141 SSR primer pairs, 127 genomic-SSR and 14 EST-SSR ones, which can be used to detect polymorphisms between the two parents, were selected to analyze the RILs population. Thus, a linkage genetic map which consists of 131 SSR loci in 20 linkage groups, with a coverage of 679 cM and an average of 6.12 cM of inter-maker distance was constructed. The putative functions of 12 EST-SSR markers located on the map were analyzed. Eleven showed homology to gene sequences deposited in GenBank. This is the first report of construction of a comprehensive genetic map with SSR markers in peanut (Arachis hypogaea L.). The map presented here will provide a genetic framework for mapping the qualitative and quantitative trait in peanut.
基金Supported by the National Research Council of Thailand 2015[grant number:R2558B114]
文摘Objective: To investigate the change in total phenolic compounds, antioxidant activity,and resveratrol content of five different germinated peanut cultivars.Methods: The germinated sprouts of five peanut cultivars(Kalasin1, Kalasin2, Konkaen,Konkaen4, and Tainan9) were extracted with 80% ethanol and collected as crude extract.The antioxidant capacities were determined with 2,2-diphenyl-1-picrylhydrazyl and ferric ion reducing antioxidant power method.The total phenolic compound was measured using the Folin–Ciocalteau assay.The qualification and quantification of resveratrol was performed by high performance liquid chromatography method.Results: Among the five cultivars, a three-day germination of Kalasin1 showed the highest phenolic content [(40.67 ± 2.62) mg gallic acid/g dry weight], expressed the highest 2,2-diphenyl-1-picrylhydrazyl antioxidant value [(80.51 ± 1.47) mmol/L Trolox/g dry weight], and ferric ion reducing antioxidant power antioxidant value [(171.33 ± 8.59)mmol/L ascorbic acid/g dry weight].However, the high performance liquid chromatography result of Kalasin2 significantly increased to the highest resveratrol content of(6.44 ± 1.26) mg/g dry weight on the second day of germination.Conclusions: The variation of phytochemical content in the peanut sprout is due to the effect of the peanut cultivar and the germination period.
基金the Natinnal Biotechnology Reseaxch Project of 863 High Technology, contract No. 101-01-01-02.
文摘After pre-culture and treatment of osmosis, cotyledons of immature peanut (Arachis hypogaea L.) zygotic embryos were transformed via particle bombardment with a plasmid containing a chimeric hph gene conferring resistance to hygromycin and a chimeric intron-gus gene. Selection for hygromycin resistant calluses and somatic embryos was initiated at 10th d post-bombardment on medium containing 10-25 mg/L hygromycin. Under continuous selection, hygromycin resistant plantlets were regenerated from somatic embryos and were recovered from nearly 1.6% of the bombarded cotyledons. The presence and integration of foreign DNA in regenerated hygromycin resistant plants was confirmed by PCR (polymerase chain reaction) for the intron-gus gene and by Southern hybridization of the hph gene. GUS enzyme activity was detected in leaflets from transgenic plants but not from control, non-transformed plants. The production of transgenic plants are mainly based on a newly improved somatic embryogenesis regeneration system developed by us.
基金supported by the National Natural Science Foundation of China (31601261, 31601252, 31571581 and 31571605)the China Postdoctoral Science Foundation (2016M592236)
文摘The growth and yield of peanut are negatively affected by continuous cropping.Arbuscular mycorrhizal fungi(AMF)and calcium ions(Ca^(2+))have been used to improve stress resistance in other plants,but little is known about their roles in peanut seedling growth under continuous cropping.This study investigated the possible roles of the AMF Glomus mosseae combined with exogenous Ca^(2+)in improving the physiological responses of peanut seedlings under continuous cropping.G.mosseae combined with exogenous Ca^(2+)can enhance plant biomass,Ca^(2+)level,and total chlorophyll content.Under exogenous Ca^(2+)application,the F_v/F_m in arbuscular mycorrhizal(AM)plant leaves was higher than that in the control plants when they were exposed to high irradiance levels.The peroxidase,superoxide dismutase,and catalase activities in AM plant leaves also reached their maximums,and accordingly,the malondialdehyde content was the lowest compared to other treatments.Additionally,root activity,and content of total phenolics and flavonoids were significantly increased in AM plant roots treated by Ca^(2+)compared to either G.mosseae inoculation or Ca^(2+)treatment alone.Transcription levels of AhCaM,AhCDPK,AhRAM1,and AhRAM2 were significantly improved in AM plant roots under exogenous Ca^(2+)treatment.This implied that exogenous Ca^(2+)might be involved in the regulation of G.mosseae colonization of peanut plants,and in turn,AM symbiosis might activate the Ca^(2+)signal transduction pathway.The combination of AMF and Ca^(2+)benefitted plant growth and development under continuous cropping,suggesting that it is a promising method to cope with the stress caused by continuous cropping.