Carbon fiber reinforced ultra-high temperature ceramic (UHTC) composites, consisting of carbon fibers embedded in a UHTC-matrix or a C-SiC-UHTC-matrix, are deemed as the most viable class of materials that can overc...Carbon fiber reinforced ultra-high temperature ceramic (UHTC) composites, consisting of carbon fibers embedded in a UHTC-matrix or a C-SiC-UHTC-matrix, are deemed as the most viable class of materials that can overcome the poor fracture toughness and thermal shock resistance of monolithic UHTC ma- terials, and also improve the oxidation resistance and ablation resistance of C/C and C/SiC composites at ultra-high temperatures. In this review, we summarize the different processing routes of the compos- ites based on the UHTC introducing methods, including chemical vapor infiltration/deposition (CVI/D), precursor infiltration and pyrolysis (PIP), reactive melt infiltration (RMI), slurry infiltration (SI). in-sito reaction, hot pressing (HP), etc; and the advantages and drawbacks of each method are briefly dis- cussed. The carbon fiber reinforced UHTC composites can be highly tailorable materials in terms of fiber. interface, and matrix. From the perspective of service environmental applications for engine propul- sions anti hypersonic vehicles, the material designs (mainly focusing on the composition, quantity, structure of matrix, as well as the architecture of carbon fibers, UHTCs and pores), their relevant processing routes and properties (emphasizing on the mechanical and ablation properties) are discussed in this paper. In addition, we propose a material architecture to realize the multi-function through changing the distri- bution of carbon fibers, UHTCs and pores, which will be an important issue for future development of carbon fiber reinforced UHTC composites.展开更多
The multiple beneficial effects on human health of the short-chain fatty acid butyrate,synthesized from nonabsorbed carbohydrate by colonic microbiota,are well documented.At the intestinal level,butyrate plays a regul...The multiple beneficial effects on human health of the short-chain fatty acid butyrate,synthesized from nonabsorbed carbohydrate by colonic microbiota,are well documented.At the intestinal level,butyrate plays a regulatory role on the transepithelial fluid transport,ameliorates mucosal inflammation and oxidative status,reinforces the epithelial defense barrier,and modulates visceral sensitivity and intestinal motility.In addition,a growing number of studies have stressed the role of butyrate in the prevention and inhibition of colorectal cancer.At the extraintestinal level,butyrate exerts potentially useful effects on many conditions,including hemoglobinopathies,genetic metabolic diseases,hypercholesterolemia,insulin resistance,and ischemic stroke.The mechanisms of action of butyrate are different;many of these are related to its potent regulatory effects on gene expression.These data suggest a wide spectrum of positive effects exerted by butyrate,with a high potential for a therapeutic use in human medicine.展开更多
Cotton fibers elongate rapidly after initiation of elongation, eventually leading to the deposit of a large amount of cellulose. To reveal features of cotton fiber cells at the fast elongation and the secondary cell w...Cotton fibers elongate rapidly after initiation of elongation, eventually leading to the deposit of a large amount of cellulose. To reveal features of cotton fiber cells at the fast elongation and the secondary cell wall synthesis stages, we compared the respective transcriptomes and metabolite profiles. Comparative analysis of transcriptomes by cDNA array identified 633 genes that were differentially regulated during fiber development. Principal component analysis (PCA) using expressed genes as variables divided fiber samples into four groups, which are diagnostic of developmental stages. Similar grouping results are also found if we use non-polar or polar metabolites as variables for PCA of developing fibers. Auxin signaling, wall-loosening and lipid metabolism are highly active during fiber elongation, whereas cellulose biosynthesis is predominant and many other metabolic pathways are downregulated at the secondary cell wall synthesis stage. Transcript and metabolite profiles and enzyme activities are consistent in demonstrating a specialization process of cotton fiber development toward cellulose synthesis. These data demonstrate that cotton fiber cell at a certain stage has its own unique feature, and developmental stages of cotton fiber cells can be distinguished by their transcript and metabolite profiles. During the secondary cell wall synthesis stage, metabolic pathways are streamed into cellulose synthesis.展开更多
超高性能混凝土(Ultra High Performance Concrete,UHPC)是一种具有超高强度、高韧性和优异耐久性的水泥基材料。这些优异性能可使混凝土构件的尺寸和自重显著变小,抗震性和抗海水腐蚀性能明显提高。然而其胶凝材料用量大,高温蒸汽养护...超高性能混凝土(Ultra High Performance Concrete,UHPC)是一种具有超高强度、高韧性和优异耐久性的水泥基材料。这些优异性能可使混凝土构件的尺寸和自重显著变小,抗震性和抗海水腐蚀性能明显提高。然而其胶凝材料用量大,高温蒸汽养护导致高耗能和低生产效率,掺入纤维后其成本也大大提高,这使得其在实际工程中的广泛应用受到限制。本文综述了UHPC的发展历程及纤维对UHPC力学性能的影响。最后,对UHPC的进一步研究提出了一些建议。希望为纤维对UHPC的增强增韧机理以及UHPC在实际工程中的应用提供指导和帮助。展开更多
基金supported by the Major Program of Aerospace Advanced Manufacturing Technology Research Foundation NSFC and CASC, China (Grant No. U1537204)the Research Fund of Youth Innovation Promotion Association CAS, China (Grant No. 2014171)
文摘Carbon fiber reinforced ultra-high temperature ceramic (UHTC) composites, consisting of carbon fibers embedded in a UHTC-matrix or a C-SiC-UHTC-matrix, are deemed as the most viable class of materials that can overcome the poor fracture toughness and thermal shock resistance of monolithic UHTC ma- terials, and also improve the oxidation resistance and ablation resistance of C/C and C/SiC composites at ultra-high temperatures. In this review, we summarize the different processing routes of the compos- ites based on the UHTC introducing methods, including chemical vapor infiltration/deposition (CVI/D), precursor infiltration and pyrolysis (PIP), reactive melt infiltration (RMI), slurry infiltration (SI). in-sito reaction, hot pressing (HP), etc; and the advantages and drawbacks of each method are briefly dis- cussed. The carbon fiber reinforced UHTC composites can be highly tailorable materials in terms of fiber. interface, and matrix. From the perspective of service environmental applications for engine propul- sions anti hypersonic vehicles, the material designs (mainly focusing on the composition, quantity, structure of matrix, as well as the architecture of carbon fibers, UHTCs and pores), their relevant processing routes and properties (emphasizing on the mechanical and ablation properties) are discussed in this paper. In addition, we propose a material architecture to realize the multi-function through changing the distri- bution of carbon fibers, UHTCs and pores, which will be an important issue for future development of carbon fiber reinforced UHTC composites.
基金Supported by A Grant from Agenzia Italiana del Farmaco(AIFA) grant code FARM6FJ728
文摘The multiple beneficial effects on human health of the short-chain fatty acid butyrate,synthesized from nonabsorbed carbohydrate by colonic microbiota,are well documented.At the intestinal level,butyrate plays a regulatory role on the transepithelial fluid transport,ameliorates mucosal inflammation and oxidative status,reinforces the epithelial defense barrier,and modulates visceral sensitivity and intestinal motility.In addition,a growing number of studies have stressed the role of butyrate in the prevention and inhibition of colorectal cancer.At the extraintestinal level,butyrate exerts potentially useful effects on many conditions,including hemoglobinopathies,genetic metabolic diseases,hypercholesterolemia,insulin resistance,and ischemic stroke.The mechanisms of action of butyrate are different;many of these are related to its potent regulatory effects on gene expression.These data suggest a wide spectrum of positive effects exerted by butyrate,with a high potential for a therapeutic use in human medicine.
文摘Cotton fibers elongate rapidly after initiation of elongation, eventually leading to the deposit of a large amount of cellulose. To reveal features of cotton fiber cells at the fast elongation and the secondary cell wall synthesis stages, we compared the respective transcriptomes and metabolite profiles. Comparative analysis of transcriptomes by cDNA array identified 633 genes that were differentially regulated during fiber development. Principal component analysis (PCA) using expressed genes as variables divided fiber samples into four groups, which are diagnostic of developmental stages. Similar grouping results are also found if we use non-polar or polar metabolites as variables for PCA of developing fibers. Auxin signaling, wall-loosening and lipid metabolism are highly active during fiber elongation, whereas cellulose biosynthesis is predominant and many other metabolic pathways are downregulated at the secondary cell wall synthesis stage. Transcript and metabolite profiles and enzyme activities are consistent in demonstrating a specialization process of cotton fiber development toward cellulose synthesis. These data demonstrate that cotton fiber cell at a certain stage has its own unique feature, and developmental stages of cotton fiber cells can be distinguished by their transcript and metabolite profiles. During the secondary cell wall synthesis stage, metabolic pathways are streamed into cellulose synthesis.
文摘超高性能混凝土(Ultra High Performance Concrete,UHPC)是一种具有超高强度、高韧性和优异耐久性的水泥基材料。这些优异性能可使混凝土构件的尺寸和自重显著变小,抗震性和抗海水腐蚀性能明显提高。然而其胶凝材料用量大,高温蒸汽养护导致高耗能和低生产效率,掺入纤维后其成本也大大提高,这使得其在实际工程中的广泛应用受到限制。本文综述了UHPC的发展历程及纤维对UHPC力学性能的影响。最后,对UHPC的进一步研究提出了一些建议。希望为纤维对UHPC的增强增韧机理以及UHPC在实际工程中的应用提供指导和帮助。