This paper introduces a semi-parametric model with right-censored data and a monotone constraint on the nonparametrie part. The authors study the local linear estimators of the parametric coefficients and apply B-spli...This paper introduces a semi-parametric model with right-censored data and a monotone constraint on the nonparametrie part. The authors study the local linear estimators of the parametric coefficients and apply B-spline method to approximate the nonparametric part based on grouped data. The authors obtain the rates of convergence for parametric and nonparametric estimators. Moreover, the authors also prove that the nonparametric estimator is consistent at the boundary. At last, the authors investigate the finite sample performance of the estimation.展开更多
This paper is concerned with inference of panel data varying-coefficient partially linear models with a one-way error structure. The model is a natural extension of the well-known panel data linear model (due to Balt...This paper is concerned with inference of panel data varying-coefficient partially linear models with a one-way error structure. The model is a natural extension of the well-known panel data linear model (due to Baltagi 1995) to the setting of semiparametric regressions. The authors propose a weighted profile least squares estimator (WPLSE) and a weighted local polynomial estimator (WLPE) for the parametric and nonparametric components, respectively. It is shown that the WPLSE is asymptotically more efficient than the usual profile least squares estimator (PLSE), and that the WLPE is also asymptotically more efficient than the usual local polynomial estimator (LPE). The latter is an interesting result. According to Ruckstuhl, Welsh and Carroll (2000) and Lin and Carroll (2000), ignoring the correlation structure entirely and "pretending" that the data are really independent will result in more efficient estimators when estimating nonparametric regression with longitudinal or panel data. The result in this paper shows that this is not true when the design points of the nonparametric component have a closeness property within groups. The asymptotic properties of the proposed weighted estimators are derived. In addition, a block bootstrap test is proposed for the goodness of fit of models, which can accommodate the correlations within groups illustrate the finite sample performances of the Some simulation studies are conducted to proposed procedures.展开更多
This paper studies the estimation and inference for a class of varying-coefficient regression models with error-prone covariates.The authors focus on the situation where the covariates are unobserved,there are no repe...This paper studies the estimation and inference for a class of varying-coefficient regression models with error-prone covariates.The authors focus on the situation where the covariates are unobserved,there are no repeated measurements,and the covariance matrix of the measurement errors is unknown,but some auxiliary information is available.The authors propose an instrumental variable type local polynomial estimator for the unknown varying-coefficient functions,and show that the estimator achieves the optimal nonparametric convergence rate,is asymptotically normal,and avoids using undersmoothing to allow the bandwidths to be selected using data-driven methods.A simulation is carried out to study the finite sample performance of the proposed estimator,and a real date set is analyzed to illustrate the usefulness of the developed methodology.展开更多
基金supported by Fundamental Research Funds for the Central Universitiesthe Research Funds of Renmin University of China under Grant No.11XNK027
文摘This paper introduces a semi-parametric model with right-censored data and a monotone constraint on the nonparametrie part. The authors study the local linear estimators of the parametric coefficients and apply B-spline method to approximate the nonparametric part based on grouped data. The authors obtain the rates of convergence for parametric and nonparametric estimators. Moreover, the authors also prove that the nonparametric estimator is consistent at the boundary. At last, the authors investigate the finite sample performance of the estimation.
基金supported by the Leading Academic Discipline Program211 Project for Shanghai University of Finance and Economics (the 3rd phase) (No.B803)the Shanghai Leading Academic Discipline Project (No.B210)
文摘This paper is concerned with inference of panel data varying-coefficient partially linear models with a one-way error structure. The model is a natural extension of the well-known panel data linear model (due to Baltagi 1995) to the setting of semiparametric regressions. The authors propose a weighted profile least squares estimator (WPLSE) and a weighted local polynomial estimator (WLPE) for the parametric and nonparametric components, respectively. It is shown that the WPLSE is asymptotically more efficient than the usual profile least squares estimator (PLSE), and that the WLPE is also asymptotically more efficient than the usual local polynomial estimator (LPE). The latter is an interesting result. According to Ruckstuhl, Welsh and Carroll (2000) and Lin and Carroll (2000), ignoring the correlation structure entirely and "pretending" that the data are really independent will result in more efficient estimators when estimating nonparametric regression with longitudinal or panel data. The result in this paper shows that this is not true when the design points of the nonparametric component have a closeness property within groups. The asymptotic properties of the proposed weighted estimators are derived. In addition, a block bootstrap test is proposed for the goodness of fit of models, which can accommodate the correlations within groups illustrate the finite sample performances of the Some simulation studies are conducted to proposed procedures.
基金supported by the Graduate Student Innovation Foundation of SHUFE(#CXJJ-2011-351)supported by the Natural Sciences and Engineering Research Council of Canada
文摘This paper studies the estimation and inference for a class of varying-coefficient regression models with error-prone covariates.The authors focus on the situation where the covariates are unobserved,there are no repeated measurements,and the covariance matrix of the measurement errors is unknown,but some auxiliary information is available.The authors propose an instrumental variable type local polynomial estimator for the unknown varying-coefficient functions,and show that the estimator achieves the optimal nonparametric convergence rate,is asymptotically normal,and avoids using undersmoothing to allow the bandwidths to be selected using data-driven methods.A simulation is carried out to study the finite sample performance of the proposed estimator,and a real date set is analyzed to illustrate the usefulness of the developed methodology.