Based on geological and mining characteristics,coal mine roadways under complex conditions were divided into five types,for each type the deformation and damage characteristics of rocks surrounding roadways were analy...Based on geological and mining characteristics,coal mine roadways under complex conditions were divided into five types,for each type the deformation and damage characteristics of rocks surrounding roadways were analyzed.The recent developments of roadway support technologies were introduced abroad,based on the experiences of supports for deep and complex roadways from Germany,the United States and Australia.The history and achievements of roadway support technologies in China were detailed,including rock bolting,steel supports,grouting reinforcement and combined supports.Four typical support and reinforcement case studies were analyzed,including a high stressed roadway 1,000 m below the surface,a roadway surrounded by severely weak and broken rocks,a chamber surrounded by weak and broken rocks,and a roadway with very soft and swelling rocks.Based on studies and practices in many years,rock bolting has become the mainstream roadway support form in China coal mines,and steel supports,grouting reinforcement and combined supports have also been applied at proper occasions,which have provided reliable technical measures for the safe and high effective construction and mining of underground coal mines.展开更多
The HoekeBrown criterion was introduced in 1980 to provide input for the design of underground excavations in rock.The criterion now incorporates both intact rock and discontinuities,such as joints,characterized by th...The HoekeBrown criterion was introduced in 1980 to provide input for the design of underground excavations in rock.The criterion now incorporates both intact rock and discontinuities,such as joints,characterized by the geological strength index(GSI),into a system designed to estimate the mechanical behaviour of typical rock masses encountered in tunnels,slopes and foundations.The strength and deformation properties of intact rock,derived from laboratory tests,are reduced based on the properties of discontinuities in the rock mass.The nonlinear HoekeBrown criterion for rock masses is widely accepted and has been applied in many projects around the world.While,in general,it has been found to provide satisfactory estimates,there are several questions on the limits of its applicability and on the inaccuracies related to the quality of the input data.This paper introduces relatively few fundamental changes,but it does discuss many of the issues of utilization and presents case histories to demonstrate practical applications of the criterion and the GSI system.展开更多
Based on petrological and geochemical characteristics such as rock assemblage, petrogeochemistry, Sr-Nd isotope, zircon U-Pb age, and Hf isotope, we studied geochronological framework, magma types, source characters, ...Based on petrological and geochemical characteristics such as rock assemblage, petrogeochemistry, Sr-Nd isotope, zircon U-Pb age, and Hf isotope, we studied geochronological framework, magma types, source characters, and petrogenesis of different stages of magmatism of the granitic rocks from the Gangdese batholith in southern Tibet. The magmatic activities of the Gangdese batholith can be divided into three stages. The Mesozoic magmatism, induced by northern subduction of Neotethyan slab, was continuously developed, with two peak periods of Late Jurassic and Early Cretaceous. The Paleocene-Eocene magmatism was the most intensive, and resulted from a complex progress of Neotethyan oceanic slab, including subduction, rollback, and subsequent breakoff. And the Oligocene-Miocene magmatism was attributed to the convective removal of thickened lithosphere in an east-west extension setting after India-Asia collision. Isotopically, zircons from these granitic rocks are characterized by positive εHf(t) values, suggesting that the magmatic source of the Gangdese batholith might be an arc terrane, which was accreted to the southern margin of Asia during Late Paleozoic. Therefore, the chronological framework and Hf isotopic characteristics of the Gangdese batholith are distinct from the granitic rocks in adjacent areas, which can be served as a powerful tracer in studying source-to-sink relation of sediments during the uplift and erosion of Tibetan Plateau.展开更多
文摘Based on geological and mining characteristics,coal mine roadways under complex conditions were divided into five types,for each type the deformation and damage characteristics of rocks surrounding roadways were analyzed.The recent developments of roadway support technologies were introduced abroad,based on the experiences of supports for deep and complex roadways from Germany,the United States and Australia.The history and achievements of roadway support technologies in China were detailed,including rock bolting,steel supports,grouting reinforcement and combined supports.Four typical support and reinforcement case studies were analyzed,including a high stressed roadway 1,000 m below the surface,a roadway surrounded by severely weak and broken rocks,a chamber surrounded by weak and broken rocks,and a roadway with very soft and swelling rocks.Based on studies and practices in many years,rock bolting has become the mainstream roadway support form in China coal mines,and steel supports,grouting reinforcement and combined supports have also been applied at proper occasions,which have provided reliable technical measures for the safe and high effective construction and mining of underground coal mines.
文摘The HoekeBrown criterion was introduced in 1980 to provide input for the design of underground excavations in rock.The criterion now incorporates both intact rock and discontinuities,such as joints,characterized by the geological strength index(GSI),into a system designed to estimate the mechanical behaviour of typical rock masses encountered in tunnels,slopes and foundations.The strength and deformation properties of intact rock,derived from laboratory tests,are reduced based on the properties of discontinuities in the rock mass.The nonlinear HoekeBrown criterion for rock masses is widely accepted and has been applied in many projects around the world.While,in general,it has been found to provide satisfactory estimates,there are several questions on the limits of its applicability and on the inaccuracies related to the quality of the input data.This paper introduces relatively few fundamental changes,but it does discuss many of the issues of utilization and presents case histories to demonstrate practical applications of the criterion and the GSI system.
基金Supported by Knowledge Innovation Project of the Chinese Academy of Sciences (Grant No. KZCX2-YW-Q09-06)National Natural Science Foundation of China (Grant No. 40721062)
文摘Based on petrological and geochemical characteristics such as rock assemblage, petrogeochemistry, Sr-Nd isotope, zircon U-Pb age, and Hf isotope, we studied geochronological framework, magma types, source characters, and petrogenesis of different stages of magmatism of the granitic rocks from the Gangdese batholith in southern Tibet. The magmatic activities of the Gangdese batholith can be divided into three stages. The Mesozoic magmatism, induced by northern subduction of Neotethyan slab, was continuously developed, with two peak periods of Late Jurassic and Early Cretaceous. The Paleocene-Eocene magmatism was the most intensive, and resulted from a complex progress of Neotethyan oceanic slab, including subduction, rollback, and subsequent breakoff. And the Oligocene-Miocene magmatism was attributed to the convective removal of thickened lithosphere in an east-west extension setting after India-Asia collision. Isotopically, zircons from these granitic rocks are characterized by positive εHf(t) values, suggesting that the magmatic source of the Gangdese batholith might be an arc terrane, which was accreted to the southern margin of Asia during Late Paleozoic. Therefore, the chronological framework and Hf isotopic characteristics of the Gangdese batholith are distinct from the granitic rocks in adjacent areas, which can be served as a powerful tracer in studying source-to-sink relation of sediments during the uplift and erosion of Tibetan Plateau.