[Objective] The aim of this study was to provide a fast, stable and efficient piggery wastewater processing technology. [Method] The start-up process was studied through the experiment of piggery anaerobic fermentatio...[Objective] The aim of this study was to provide a fast, stable and efficient piggery wastewater processing technology. [Method] The start-up process was studied through the experiment of piggery anaerobic fermentation slurry treated by Anoxic/Oxic (A/O) reactor. The process was divided into two stages: at the first stage, dominant micro flora were cultivated in Anoxic and Oxic reaction tanks respectively; at the second stage. Anoxic and Oxic reaction tanks were initiated jointly to gradually enhance water load and continued to cultivate and domesticate microorganisms, and finally the start-up process was completed. [ Result] The results showed that return mixture ratio and return sludge ratio was 2 and 1 respectively when the temperature reached 32 ±2 ℃. However. when aeration rate of Oxic reaction amounted to 0.5 m^3/h, the re- moval rate of COD and NH4^+ -H were 89.87% and 89.31% respectively through practical operation within 50 days, which indicated that the start- up process through A/O reactor was successful. Conclusion This study can provide a scientific basis and reference for innocuous technique of piggery anaerobic fermentation slurry treatment.展开更多
To improve the working and living environment of submarine crews, an integrated system of CO2 removal and O2 regeneration was designed to work under experimental conditions for 50 people in a submarine cabin during pr...To improve the working and living environment of submarine crews, an integrated system of CO2 removal and O2 regeneration was designed to work under experimental conditions for 50 people in a submarine cabin during prolonged voyages. The integrated system comprises a solid amine water desorption (SAWD) unit for CO2 collection and concentration, a Sabatier reactor for CO2 reduction and a solid polymer electrolyte (SPE) unit for O2 regeneration by electrolysis. The performances of the SAWD-Sabatier-SPE integrated system were investigated. The experimental results from the SAWD unit showed that the average CO2 concentration in the CO2 storage tank was more than 96% and the outlet CO2 concentration was nearly zero in the first 45 min, and less than 1/10 of inlet CO2 after 60 min when input CO2 was 0.5% (1000 L). About 950 L of CO2 was recovered with a recovery rate of 92%-97%. The output CO2 concentration was less than 0.2%, which showed that the adsorption-desorption performance of this unit was excellent. In the CO2 reduction unit we investigated mainly the start-up and reaction performance of the Sabatier reactor. The start-up time of the Sabatier reactor was 6, 8 and 10 rain when the start-up temperature was 187.3, 179.5 and 168 ℃, respectively. The product water was colorless, transparent, and had a pH of 6.9-7.5, and an electrical conductivity of 80μs/cm. The sum of the concentration of metal ions (Ru^3+, Al^3+, Pb^2+) was 0.028% and that of nonmetal ions (Cl^-, SO4^2-) was 0.05%. In the O2 regeneration unit, the O2 generation rate was 0.48 m^3/d and the quantity was 2400 L, sufficient to meet the submariners' basic oxygen demands. These results may be useful as a basis for establishing CO2-1evel limits and O2 regeneration systems in submarines or similar enclosed compartments during prolonged voyages.展开更多
基金Supported by National Eleventh Five-Year Science and TechnologySupport Program(1-1-12-0661)~~
文摘[Objective] The aim of this study was to provide a fast, stable and efficient piggery wastewater processing technology. [Method] The start-up process was studied through the experiment of piggery anaerobic fermentation slurry treated by Anoxic/Oxic (A/O) reactor. The process was divided into two stages: at the first stage, dominant micro flora were cultivated in Anoxic and Oxic reaction tanks respectively; at the second stage. Anoxic and Oxic reaction tanks were initiated jointly to gradually enhance water load and continued to cultivate and domesticate microorganisms, and finally the start-up process was completed. [ Result] The results showed that return mixture ratio and return sludge ratio was 2 and 1 respectively when the temperature reached 32 ±2 ℃. However. when aeration rate of Oxic reaction amounted to 0.5 m^3/h, the re- moval rate of COD and NH4^+ -H were 89.87% and 89.31% respectively through practical operation within 50 days, which indicated that the start- up process through A/O reactor was successful. Conclusion This study can provide a scientific basis and reference for innocuous technique of piggery anaerobic fermentation slurry treatment.
基金supported by the National Natural Science Foundation of China (No. 50908062)the State Key Lab of Urban Water Resource and Environment (No. HIT-QAK200808)the Heilongjiang Natural Science Foundation (No. E2007-04), China
文摘To improve the working and living environment of submarine crews, an integrated system of CO2 removal and O2 regeneration was designed to work under experimental conditions for 50 people in a submarine cabin during prolonged voyages. The integrated system comprises a solid amine water desorption (SAWD) unit for CO2 collection and concentration, a Sabatier reactor for CO2 reduction and a solid polymer electrolyte (SPE) unit for O2 regeneration by electrolysis. The performances of the SAWD-Sabatier-SPE integrated system were investigated. The experimental results from the SAWD unit showed that the average CO2 concentration in the CO2 storage tank was more than 96% and the outlet CO2 concentration was nearly zero in the first 45 min, and less than 1/10 of inlet CO2 after 60 min when input CO2 was 0.5% (1000 L). About 950 L of CO2 was recovered with a recovery rate of 92%-97%. The output CO2 concentration was less than 0.2%, which showed that the adsorption-desorption performance of this unit was excellent. In the CO2 reduction unit we investigated mainly the start-up and reaction performance of the Sabatier reactor. The start-up time of the Sabatier reactor was 6, 8 and 10 rain when the start-up temperature was 187.3, 179.5 and 168 ℃, respectively. The product water was colorless, transparent, and had a pH of 6.9-7.5, and an electrical conductivity of 80μs/cm. The sum of the concentration of metal ions (Ru^3+, Al^3+, Pb^2+) was 0.028% and that of nonmetal ions (Cl^-, SO4^2-) was 0.05%. In the O2 regeneration unit, the O2 generation rate was 0.48 m^3/d and the quantity was 2400 L, sufficient to meet the submariners' basic oxygen demands. These results may be useful as a basis for establishing CO2-1evel limits and O2 regeneration systems in submarines or similar enclosed compartments during prolonged voyages.