The light output functions for protons of ST-401 and BC-408 plastic scintillators were measured using white neutron source produced by the 9Be(d,n) 10B reaction at the HI-13 Tandem Accelerator at China Institute of ...The light output functions for protons of ST-401 and BC-408 plastic scintillators were measured using white neutron source produced by the 9Be(d,n) 10B reaction at the HI-13 Tandem Accelerator at China Institute of Atomic Energy(CIAE).The LOFs of plastic scintillators for protons in the energy range of 0.5-16.5 MeV were obtained by the time-of-flight(TOF) technique and an iterative procedure.Two parameters(kB and C) were deduced by fitting the experimental data.展开更多
The multi-layer computing model is developed to calculate wide-angle neutron spectra, in the range from0° to 180° with a 5° step, produced by bombarding a thick beryllium target with deuterons. The doub...The multi-layer computing model is developed to calculate wide-angle neutron spectra, in the range from0° to 180° with a 5° step, produced by bombarding a thick beryllium target with deuterons. The double-differential cross-sections(DDCSs) for the ~9 Be(d, xn) reaction are calculated using the TALYS-1.8 code. They are in agreement with the experimental data, and are much better than the PHITS-JQMD/GEM results at 15°, 30°, 45° and 60° neutron emission angles for deuteron energy of 10.0 MeV. In the TALYS-1.8 code, neutron contributions from direct reactions(break-up, stripping and knock-out reactions) are controlled by adjustable parameters, which describe the basic characteristics of typical direct reactions and control the relative intensity and the position of the ridgy hillock at the tail of DDCSs. It is found that the typical calculated wide-angle neutron spectra for different neutron emission angles and neutron angular distributions agree quite well with the experimental data for 13.5 MeV deuterons. The multi-layer computing model can reproduce the experimental data reasonably well by optimizing the adjustable parameters in the TALYS-1.8 code. Given the good agreement with the experimental data, the multi-layer computing model could provide better predictions of wide-angle neutron energy spectra, neutron angular distributions and neutron yields for the ~9 Be(d, xn) reaction neutron source.展开更多
Novel measurements of the neutron energy spectra of the 9Be(d,n)10B reaction with a thick beryllium target are performed using a fast neutron time-of-flight(TOF)spectrometer for the neutron emission angles θ=0°a...Novel measurements of the neutron energy spectra of the 9Be(d,n)10B reaction with a thick beryllium target are performed using a fast neutron time-of-flight(TOF)spectrometer for the neutron emission angles θ=0°and 45°,and the incident deuteron energies are 250 and 300 keV,respectively.The neutron contributions from the 9Be(d,n)10B reaction are distributed relatively independently for the ground state and the first,second,and third excited states of 10B.The branching ratios of the 9Be(d,n)10B reaction for the different excited states of 10B are obtained for the neutron emission angles θ=0°and 45°,and the incident deuteron energies are 250 and 300 keV,respectively.The branching ratio of the 9Be(d,n)10B reaction for the third excited state decreases with increase in the incident deuteron energy,and the branching ratios for the ground state and the second excited state increase with increase in the neutron emission angle.展开更多
The neutron total cross section data of^(9)Be are essential in the nuclear structure model research of light nuclei and nuclear power installations.The neutron total cross section of^(9)Be in the 0.3 eV−120 MeV energy...The neutron total cross section data of^(9)Be are essential in the nuclear structure model research of light nuclei and nuclear power installations.The neutron total cross section of^(9)Be in the 0.3 eV−120 MeV energy region has been measured using time-of-flight and transmission methods with the Neutron Total Cross Sectional Spectrometer(NTOX)based on the multi-cell fast fission chamber at the China Spallation Neutron Source(CSNS)-Back-n white neutron source(Back-n).The fission count-neutron energy distributions of ^(235)U and ^(238)U without samples and with Be samples with three thicknesses were measured in the double-bunch operation mode for a beam power of 100 kW.The Bayesian method was used to eliminate the influence of the double-bunch problem on neutron measurement in the energy region above 10 keV.The neutron total cross section of^(9)Be results was consistent with ENDF/B-VIII.0 evaluation library data in the 0.3 eV−20 MeV energy region.In the energy ranges of 0.3 eV to 10 keV and 0.01 to 20 MeV,the deviations between our results and the evaluation results of ENDF/B-VIII.0 were within 2.5%and 15%,respectively.In the resonance energy region,the measured resonance energies in our experiment were 0.63,0.82,and 2.8 MeV,respectively.The results showed that the total cross section uncertainties of three Be samples were within 2.2%in the energy region below 1 MeV.The total cross section uncertainty of 30 mm Be from ^(235)U was the smallest and less than 5%in the energy region of 0.3 eV−120 MeV.The results of this experiment can provide technical support for further data analysis and related nuclear data evaluation.展开更多
Within the framework of the modified potential cluster model with forbidden states,the total cross-sections of radiative n^(9)Be capture to the ground and five low-lying excited states are calculated at energies from ...Within the framework of the modified potential cluster model with forbidden states,the total cross-sections of radiative n^(9)Be capture to the ground and five low-lying excited states are calculated at energies from 10^(-2)eV up to 5 MeV.The thermal cross-section σ_(th)=8.35mb is in good agreement with experimental data.We considered five resonances at the excitation energies E_(x)from 7.371 MeV up to 10.570 MeV corresponding to the following states with J^(π)(E_(x),MeV):3^(-)(7.371),2^(+)(7.542),3^(+)(9.4),2^(+)(9.56),and 3^(-)(10.570).The partial and total ^(9)Be(n,γ0+1+2+3+4+5)^(10)Be reaction rates are calculated at temperatures from 0.001 to 10 T_(9).Contrary to the available data,we propose that the rise in the reaction rate near factor five at T_(9)>1 is mainly due to the first 3^(-)(E_(R)=0.559 MeV)resonance.We foresee this contrast as arising from different model approaches.展开更多
The thick-target yield of the ^(9)Be(d,α0)7Li and ^(9)Be(d,α1)7Li*reactions has been first directly measured over deuteron energies from 66 to 94 keV.The obtained S(Ei)ofα0 andα1 have similar trends calculated by ...The thick-target yield of the ^(9)Be(d,α0)7Li and ^(9)Be(d,α1)7Li*reactions has been first directly measured over deuteron energies from 66 to 94 keV.The obtained S(Ei)ofα0 andα1 have similar trends calculated by the thin-target yield,consistent with Yan’s report within the errors.Furthermore,the parametric expression of S(E)was obtained to calculate the theoretical thick target yield,and it roughly agrees with the experimental thick target yield.展开更多
文摘The light output functions for protons of ST-401 and BC-408 plastic scintillators were measured using white neutron source produced by the 9Be(d,n) 10B reaction at the HI-13 Tandem Accelerator at China Institute of Atomic Energy(CIAE).The LOFs of plastic scintillators for protons in the energy range of 0.5-16.5 MeV were obtained by the time-of-flight(TOF) technique and an iterative procedure.Two parameters(kB and C) were deduced by fitting the experimental data.
基金Supported by the National Magnetic Confinement Fusion Science Program of China(2014GB104002)the National Natural Science Foundation of China(11705071,11875155,11675069,21327801)+2 种基金NSAF(U1830102)the National Key Scientific Instrument and Equipment Development Project(2013YQ40861)the Fundamental Research Funds for the Central Universities(lzujbky-2017-13,lzujbky-2017-kb09)
文摘The multi-layer computing model is developed to calculate wide-angle neutron spectra, in the range from0° to 180° with a 5° step, produced by bombarding a thick beryllium target with deuterons. The double-differential cross-sections(DDCSs) for the ~9 Be(d, xn) reaction are calculated using the TALYS-1.8 code. They are in agreement with the experimental data, and are much better than the PHITS-JQMD/GEM results at 15°, 30°, 45° and 60° neutron emission angles for deuteron energy of 10.0 MeV. In the TALYS-1.8 code, neutron contributions from direct reactions(break-up, stripping and knock-out reactions) are controlled by adjustable parameters, which describe the basic characteristics of typical direct reactions and control the relative intensity and the position of the ridgy hillock at the tail of DDCSs. It is found that the typical calculated wide-angle neutron spectra for different neutron emission angles and neutron angular distributions agree quite well with the experimental data for 13.5 MeV deuterons. The multi-layer computing model can reproduce the experimental data reasonably well by optimizing the adjustable parameters in the TALYS-1.8 code. Given the good agreement with the experimental data, the multi-layer computing model could provide better predictions of wide-angle neutron energy spectra, neutron angular distributions and neutron yields for the ~9 Be(d, xn) reaction neutron source.
基金Supported by the National Natural Science Foundation of China(11875155,11705071.12075105)the NSFC-Nuclear Technology Innovation Joint Fund(U1867213),the NSAF(U1830102)+1 种基金the Fundamental Research Funds for the Central Universities of China(zujbky-2020-kb09)the Projet of National Defense Science and Technology Industry for Nuclear Power Technology Inovation Center(HDLCXZX-2019-HD-33)。
文摘Novel measurements of the neutron energy spectra of the 9Be(d,n)10B reaction with a thick beryllium target are performed using a fast neutron time-of-flight(TOF)spectrometer for the neutron emission angles θ=0°and 45°,and the incident deuteron energies are 250 and 300 keV,respectively.The neutron contributions from the 9Be(d,n)10B reaction are distributed relatively independently for the ground state and the first,second,and third excited states of 10B.The branching ratios of the 9Be(d,n)10B reaction for the different excited states of 10B are obtained for the neutron emission angles θ=0°and 45°,and the incident deuteron energies are 250 and 300 keV,respectively.The branching ratio of the 9Be(d,n)10B reaction for the third excited state decreases with increase in the incident deuteron energy,and the branching ratios for the ground state and the second excited state increase with increase in the neutron emission angle.
基金Supported by the National Key Research and Development Plan(2016YFA0401603)the National Natural Science Foundation of China(11675155,11790321)Foundation of President of China Academy of Engineering Physics(YZJLX2016003)。
文摘The neutron total cross section data of^(9)Be are essential in the nuclear structure model research of light nuclei and nuclear power installations.The neutron total cross section of^(9)Be in the 0.3 eV−120 MeV energy region has been measured using time-of-flight and transmission methods with the Neutron Total Cross Sectional Spectrometer(NTOX)based on the multi-cell fast fission chamber at the China Spallation Neutron Source(CSNS)-Back-n white neutron source(Back-n).The fission count-neutron energy distributions of ^(235)U and ^(238)U without samples and with Be samples with three thicknesses were measured in the double-bunch operation mode for a beam power of 100 kW.The Bayesian method was used to eliminate the influence of the double-bunch problem on neutron measurement in the energy region above 10 keV.The neutron total cross section of^(9)Be results was consistent with ENDF/B-VIII.0 evaluation library data in the 0.3 eV−20 MeV energy region.In the energy ranges of 0.3 eV to 10 keV and 0.01 to 20 MeV,the deviations between our results and the evaluation results of ENDF/B-VIII.0 were within 2.5%and 15%,respectively.In the resonance energy region,the measured resonance energies in our experiment were 0.63,0.82,and 2.8 MeV,respectively.The results showed that the total cross section uncertainties of three Be samples were within 2.2%in the energy region below 1 MeV.The total cross section uncertainty of 30 mm Be from ^(235)U was the smallest and less than 5%in the energy region of 0.3 eV−120 MeV.The results of this experiment can provide technical support for further data analysis and related nuclear data evaluation.
基金Supported by the Ministry of Science and Higher Education of the Republic of Kazakhstan(AP09259021)。
文摘Within the framework of the modified potential cluster model with forbidden states,the total cross-sections of radiative n^(9)Be capture to the ground and five low-lying excited states are calculated at energies from 10^(-2)eV up to 5 MeV.The thermal cross-section σ_(th)=8.35mb is in good agreement with experimental data.We considered five resonances at the excitation energies E_(x)from 7.371 MeV up to 10.570 MeV corresponding to the following states with J^(π)(E_(x),MeV):3^(-)(7.371),2^(+)(7.542),3^(+)(9.4),2^(+)(9.56),and 3^(-)(10.570).The partial and total ^(9)Be(n,γ0+1+2+3+4+5)^(10)Be reaction rates are calculated at temperatures from 0.001 to 10 T_(9).Contrary to the available data,we propose that the rise in the reaction rate near factor five at T_(9)>1 is mainly due to the first 3^(-)(E_(R)=0.559 MeV)resonance.We foresee this contrast as arising from different model approaches.
基金Partly supported by National Natural Science Foundation of China(11305080)The Fundamental Research Funds for the Central Universities(lzujbky-2019-53)。
文摘The thick-target yield of the ^(9)Be(d,α0)7Li and ^(9)Be(d,α1)7Li*reactions has been first directly measured over deuteron energies from 66 to 94 keV.The obtained S(Ei)ofα0 andα1 have similar trends calculated by the thin-target yield,consistent with Yan’s report within the errors.Furthermore,the parametric expression of S(E)was obtained to calculate the theoretical thick target yield,and it roughly agrees with the experimental thick target yield.