[目的]小麦遗传图谱是进行小麦染色体分析和研究表型变异的遗传基础。通过利用传统分子标记和现代基因芯片技术相结合,构建高密度遗传图谱,重点开展主要产量主要构成要素——粒重的初级基因定位,确定影响粒重的主效QTL位点,为开发粒重C...[目的]小麦遗传图谱是进行小麦染色体分析和研究表型变异的遗传基础。通过利用传统分子标记和现代基因芯片技术相结合,构建高密度遗传图谱,重点开展主要产量主要构成要素——粒重的初级基因定位,确定影响粒重的主效QTL位点,为开发粒重CAPS分子标记及在分子标记辅助育种提供依据和指导,并为利用小麦粒重次级群体进行精细定位和基因挖掘奠定基础。[方法]利用90 K小麦SNP基因芯片、DArt芯片技术及传统的分子标记技术,以包含173个家系的RIL群体(F9:10重组自交系)为材料,构建高密度遗传图谱,并利用QTL network2.0进行了3年共4环境粒重QTL分析。[结果]构建了覆盖小麦21条染色体的高密度遗传图谱,该图谱共含有6 244个多态性标记,其中SNP标记6 001个、DAr T标记216个、SSR标记27个,覆盖染色体总长度4 875.29 c M,标记间平均距离0.78 c M。A、B、D染色体组分别有2 390、3 386和468个标记,分别占总标记数的38.3%、54.3%和7.5%;3个染色体组标记间平均距离分别为0.80、0.75和0.80 c M。用该分子遗传图谱对4个环境下粒重进行QTL分析,检测到位于1B、4B、5B、6A染色体上9个加性QTL,效应值大于10%的QTL位点有QGW4B-17、QGW4B-5、QGW4B-2、QGW6A-344、QGW6A-137;其中QGW4B-17在多个环境下检测到,其贡献率为16%—33.3%,可增加粒重效应值2.30-2.97g,该位点是稳定表达的主效QTL。9个QTL的加性效应均来自大粒母本山农01-35,单个QTL位点加性效应可增加千粒重1.09—2.97 g。[结论]构建的覆盖小麦21条染色体的分子遗传图谱共含有6 241个多态性标记,标记间平均距离为0.77 c M。利用该图谱检测到位于1B、4B、5B、6A染色体上9个控制粒重的加性QTL,其中QGW4B-17是稳定表达的主效QTL位点,贡献率为16.5%—33%,可增加粒重效应值2.30—2.97 g。展开更多
小麦遗传图谱是进行小麦染色体分析和表型研究的遗传基础.构建高密度遗传图谱,针对小麦重要农艺性状进行初级定位,确定相关性状主效数量性状位点(Quantitative Trait Loci,QTL),有助于开发辅助选择的实用性标记,并为利用次级群体进行精...小麦遗传图谱是进行小麦染色体分析和表型研究的遗传基础.构建高密度遗传图谱,针对小麦重要农艺性状进行初级定位,确定相关性状主效数量性状位点(Quantitative Trait Loci,QTL),有助于开发辅助选择的实用性标记,并为利用次级群体进行精细定位和基因挖掘奠定基础.本研究以H461×CN16的重组自交系(Recombinant Inbred Line,RIL)为作图群体,利用90k小麦SNP基因芯片技术,对包含188个家系的RIL群体(F7)进行多态性分析,构建高密度遗传图谱,并利用Map QTL5.0的多QTL模型(MQM),对旗叶长、穗粒数等8个重要农艺性状进行QTL定位分析.构建了包括43个连锁群的分子遗传图谱,成功连锁到除2D、5D、6D外的18条染色体.该图谱共含有6 573个多态性SNP标记,覆盖的遗传距离长2 647.02 c M,标记间平均距离仅为0.4 c M.A、B、D三个染色体组分别含有标记2 696、3 094和684个;覆盖染色长度分别为1 130.92 c M、1 164.82 c M和330.44 c M;分别建立19、18和5个连锁群.对8种重要田间农艺性状进行QTL分析,共检测到66个重要农艺性状QTL,其中包括26个主效QTL,包含未见报道的新位点7个.全部QTL分布于2A、4A、6A、2B、4B、5B、2D、4D、7D 9条染色体上,单个QTL可解释表型变异率7.4%-19.5%,其中62个QTL加性效应来自母本H461,其余来自父本CN16.以上结果为小麦重要农艺性状QTL精细定位打下了基础,也为分子标记辅助育种提供了参考.展开更多
为鉴定EMS突变的真实性,本研究利用SSR标记和90 K SNP芯片对小麦品系H261及其EMS突变体进行检测。SSR检测结果表明,H261与LF2010和LF2099的差异SSR标记为0个,但与LF2100的差异SSR标记为10个,多态性比例为47.62%。SNP芯片分析结果表明,H...为鉴定EMS突变的真实性,本研究利用SSR标记和90 K SNP芯片对小麦品系H261及其EMS突变体进行检测。SSR检测结果表明,H261与LF2010和LF2099的差异SSR标记为0个,但与LF2100的差异SSR标记为10个,多态性比例为47.62%。SNP芯片分析结果表明,H261与LF2010和LF2099之间的差异位点分别为66和12个,分别占总数的0.080 9%和0.014 7%,2个突变体与H261的纯合差异SNP数目均为0;而H261与LF2100之间的差异位点为2 846个,占总数的3.487 9%,二者之间纯合差异SNP为784,占总数的0.960 8%。综上所述,LF2010和LF2099突变体与亲本H261的遗传背景高度一致,是H261经过EMS诱变的后代,而LF2100是天然异交或机械混杂产生的假突变体。本研究结果为更好地发挥小麦突变体在遗传改良和功能基因组研究奠定了一定的理论基础。展开更多
文摘[目的]小麦遗传图谱是进行小麦染色体分析和研究表型变异的遗传基础。通过利用传统分子标记和现代基因芯片技术相结合,构建高密度遗传图谱,重点开展主要产量主要构成要素——粒重的初级基因定位,确定影响粒重的主效QTL位点,为开发粒重CAPS分子标记及在分子标记辅助育种提供依据和指导,并为利用小麦粒重次级群体进行精细定位和基因挖掘奠定基础。[方法]利用90 K小麦SNP基因芯片、DArt芯片技术及传统的分子标记技术,以包含173个家系的RIL群体(F9:10重组自交系)为材料,构建高密度遗传图谱,并利用QTL network2.0进行了3年共4环境粒重QTL分析。[结果]构建了覆盖小麦21条染色体的高密度遗传图谱,该图谱共含有6 244个多态性标记,其中SNP标记6 001个、DAr T标记216个、SSR标记27个,覆盖染色体总长度4 875.29 c M,标记间平均距离0.78 c M。A、B、D染色体组分别有2 390、3 386和468个标记,分别占总标记数的38.3%、54.3%和7.5%;3个染色体组标记间平均距离分别为0.80、0.75和0.80 c M。用该分子遗传图谱对4个环境下粒重进行QTL分析,检测到位于1B、4B、5B、6A染色体上9个加性QTL,效应值大于10%的QTL位点有QGW4B-17、QGW4B-5、QGW4B-2、QGW6A-344、QGW6A-137;其中QGW4B-17在多个环境下检测到,其贡献率为16%—33.3%,可增加粒重效应值2.30-2.97g,该位点是稳定表达的主效QTL。9个QTL的加性效应均来自大粒母本山农01-35,单个QTL位点加性效应可增加千粒重1.09—2.97 g。[结论]构建的覆盖小麦21条染色体的分子遗传图谱共含有6 241个多态性标记,标记间平均距离为0.77 c M。利用该图谱检测到位于1B、4B、5B、6A染色体上9个控制粒重的加性QTL,其中QGW4B-17是稳定表达的主效QTL位点,贡献率为16.5%—33%,可增加粒重效应值2.30—2.97 g。
文摘小麦遗传图谱是进行小麦染色体分析和表型研究的遗传基础.构建高密度遗传图谱,针对小麦重要农艺性状进行初级定位,确定相关性状主效数量性状位点(Quantitative Trait Loci,QTL),有助于开发辅助选择的实用性标记,并为利用次级群体进行精细定位和基因挖掘奠定基础.本研究以H461×CN16的重组自交系(Recombinant Inbred Line,RIL)为作图群体,利用90k小麦SNP基因芯片技术,对包含188个家系的RIL群体(F7)进行多态性分析,构建高密度遗传图谱,并利用Map QTL5.0的多QTL模型(MQM),对旗叶长、穗粒数等8个重要农艺性状进行QTL定位分析.构建了包括43个连锁群的分子遗传图谱,成功连锁到除2D、5D、6D外的18条染色体.该图谱共含有6 573个多态性SNP标记,覆盖的遗传距离长2 647.02 c M,标记间平均距离仅为0.4 c M.A、B、D三个染色体组分别含有标记2 696、3 094和684个;覆盖染色长度分别为1 130.92 c M、1 164.82 c M和330.44 c M;分别建立19、18和5个连锁群.对8种重要田间农艺性状进行QTL分析,共检测到66个重要农艺性状QTL,其中包括26个主效QTL,包含未见报道的新位点7个.全部QTL分布于2A、4A、6A、2B、4B、5B、2D、4D、7D 9条染色体上,单个QTL可解释表型变异率7.4%-19.5%,其中62个QTL加性效应来自母本H461,其余来自父本CN16.以上结果为小麦重要农艺性状QTL精细定位打下了基础,也为分子标记辅助育种提供了参考.
基金国家重点基础研究计划(973计划)项目(2014CB138100)陕西省自然科学基金项目(2015JM3094)+3 种基金陕西省重点科技创新团队项目(2014KCT-25)资助supported by the National Key Basic Research Program of China(2014CB138100)the Natural Science Foundation of Shaanxi Province(2015JM3094)the Key Scientific and Technological Innovation Team of Shaanxi Province(2014KCT-25)