Separation of copper and nickel by liquid-liquid extraction from aqueous solutions was studied using LIX 664N in kerosene as solvent. Both metals were taken in their sulfate form and ratio of copper to nickel in feed ...Separation of copper and nickel by liquid-liquid extraction from aqueous solutions was studied using LIX 664N in kerosene as solvent. Both metals were taken in their sulfate form and ratio of copper to nickel in feed solutions was maintained as 10:1. LIX 664N concentration in kerosene was varied from 10% to 40% (v/v) and its effect was studied on percent extraction of copper and nickel for organic to aqueous (O:A) phase ratio of 2:1 at pH 2. Experimental results showed that at pH 2, copper was selectively extracted from its mixture with nickel. Selectivity for copper extraction was as high as 6000 with 40% LIX 664N. Calculations using extraction isotherm indicate almost complete recovery of copper in two stages with O:A ratio of 1:1 and in one stage with O:A ratio of 2:1. After extraction of copper, the pH of raffinate containing nickel was adjusted to a value of 9 by addition of ammonia solution. The effect of LIX 664N concentration on extraction of nickel was studied. Up to 80% nickel could be extracted with 30% LIX 664N at O:A phase ratio of 2:1. Stripping of copper from the organic phase with 180 g/l sulfuric acid at O:A phase ratio of 1:1 gave 98.5% copper recovery in a two-stage operation.展开更多
Process intensification using liquid emulsion membranes (LEMs) for extraction of copper has been studied in this work. In LEM process the extraction and stripping processes are combined in one stage. The solubility of...Process intensification using liquid emulsion membranes (LEMs) for extraction of copper has been studied in this work. In LEM process the extraction and stripping processes are combined in one stage. The solubility of the solute or the chemical affinity between the solute and carrier reagent in the membrane results in the separation of the solute from the feed mixture. In this work the membrane phase comprised of LIX 664N as the extractant dissolved in kerosene and Span 80 as surfactant. The stripping phase was sulfuric acid with 180 g/l concentration and feed phase had copper concentration of 3.5 g/l. Effect of various process parameters such as batch contact time, speed of agitation, W:O ratio and treat ratio has been experimentally investigated to get better insight of the process. The maximum enrichment of copper in the internal phase obtained was 11.6 times with batch contact time of 10 minutes, agitation speed of 300 rpm and treat ratio of 6:1.展开更多
文摘Separation of copper and nickel by liquid-liquid extraction from aqueous solutions was studied using LIX 664N in kerosene as solvent. Both metals were taken in their sulfate form and ratio of copper to nickel in feed solutions was maintained as 10:1. LIX 664N concentration in kerosene was varied from 10% to 40% (v/v) and its effect was studied on percent extraction of copper and nickel for organic to aqueous (O:A) phase ratio of 2:1 at pH 2. Experimental results showed that at pH 2, copper was selectively extracted from its mixture with nickel. Selectivity for copper extraction was as high as 6000 with 40% LIX 664N. Calculations using extraction isotherm indicate almost complete recovery of copper in two stages with O:A ratio of 1:1 and in one stage with O:A ratio of 2:1. After extraction of copper, the pH of raffinate containing nickel was adjusted to a value of 9 by addition of ammonia solution. The effect of LIX 664N concentration on extraction of nickel was studied. Up to 80% nickel could be extracted with 30% LIX 664N at O:A phase ratio of 2:1. Stripping of copper from the organic phase with 180 g/l sulfuric acid at O:A phase ratio of 1:1 gave 98.5% copper recovery in a two-stage operation.
文摘Process intensification using liquid emulsion membranes (LEMs) for extraction of copper has been studied in this work. In LEM process the extraction and stripping processes are combined in one stage. The solubility of the solute or the chemical affinity between the solute and carrier reagent in the membrane results in the separation of the solute from the feed mixture. In this work the membrane phase comprised of LIX 664N as the extractant dissolved in kerosene and Span 80 as surfactant. The stripping phase was sulfuric acid with 180 g/l concentration and feed phase had copper concentration of 3.5 g/l. Effect of various process parameters such as batch contact time, speed of agitation, W:O ratio and treat ratio has been experimentally investigated to get better insight of the process. The maximum enrichment of copper in the internal phase obtained was 11.6 times with batch contact time of 10 minutes, agitation speed of 300 rpm and treat ratio of 6:1.