期刊文献+
共找到3篇文章
< 1 >
每页显示 20 50 100
The order-preserving convergence for spectral approximation of self-adjoint completely continuous operators 被引量:9
1
作者 YANG YiDu CHEN Zhen 《Science China Mathematics》 SCIE 2008年第7期1232-1242,共11页
This paper discusses the order-preserving convergence for spectral approximation of the self-adjoint completely continuous operator T.Under the condition that the approximate operator Th converges to T in norm,it is p... This paper discusses the order-preserving convergence for spectral approximation of the self-adjoint completely continuous operator T.Under the condition that the approximate operator Th converges to T in norm,it is proven that the k-th eigenvalue of Th converges to the k-th eigenvalue of T.(We sorted the positive eigenvalues in decreasing order and negative eigenvalues in increasing order.) Then we apply this result to conforming elements,nonconforming elements and mixed elements of self-adjoint elliptic differential operators eigenvalue problems,and prove that the k-th approximate eigenvalue obtained by these methods converges to the k-th exact eigenvalue. 展开更多
关键词 self-adjoint completely continuous operator spectral approximation the order-preserving convergence 65n25 65n30 35P15 65n15
原文传递
Generalized Rayleigh quotient and finite element two-grid discretization schemes 被引量:3
2
作者 YANG YiDu FAN XinYue 《Science China Mathematics》 SCIE 2009年第9期1955-1972,共18页
This study discusses generalized Rayleigh quotient and high efficiency finite element discretization schemes. Some results are as follows: 1) Rayleigh quotient accelerate technique is extended to nonselfadjoint proble... This study discusses generalized Rayleigh quotient and high efficiency finite element discretization schemes. Some results are as follows: 1) Rayleigh quotient accelerate technique is extended to nonselfadjoint problems. Generalized Rayleigh quotients of operator form and weak form are defined and the basic relationship between approximate eigenfunction and its generalized Rayleigh quotient is established. 2) New error estimates are obtained by replacing the ascent of exact eigenvalue with the ascent of finite element approximate eigenvalue. 3) Based on the work of Xu Jinchao and Zhou Aihui, finite element two-grid discretization schemes are established to solve nonselfadjoint elliptic differential operator eigenvalue problems and these schemes are used in both conforming finite element and non-conforming finite element. Besides, the efficiency of the schemes is proved by both theoretical analysis and numerical experiments. 4) Iterated Galerkin method, interpolated correction method and gradient recovery for selfadjoint elliptic differential operator eigenvalue problems are extended to nonselfadjoint elliptic differential operator eigenvalue problems. 展开更多
关键词 nonselfadjoint elliptic eigenvalue problem finite elements generalized Rayleigh quotient two-grid discretization scheme 65n25 65n30
原文传递
A new class of three-variable orthogonal polynomials and their recurrences relations
3
作者 SUN JiaChang State Key Laboratory of Computer Science,R&D Center for Parallel Computing,Institute of Software,Chinese Academy of Sciences,Beijing 100080,China 《Science China Mathematics》 SCIE 2008年第6期1071-1092,共22页
A new class of three-variable orthogonal polynomials, defined as eigenfunctions of a second order PDE operator, is studied. These polynomials are orthogonal over a curved tetrahedron region, which can be seen as a map... A new class of three-variable orthogonal polynomials, defined as eigenfunctions of a second order PDE operator, is studied. These polynomials are orthogonal over a curved tetrahedron region, which can be seen as a mapping from a traditional tetrahedron, and can be taken as an extension of the 2-D Steiner domain. The polynomials can be viewed as Jacobi polynomials on such a domain. Three-term relations are derived explicitly. The number of the individual terms, involved in the recurrences relations, are shown to be independent on the total degree of the polynomials. The numbers now are determined to be five and seven, with respect to two conjugate variables z, $ \bar z $ and a real variable r, respectively. Three examples are discussed in details, which can be regarded as the analogues of the Chebyshev polynomials of the first and the second kinds, and Legendre polynomials. 展开更多
关键词 3-D PDE eigen-problem three-variable Chebyshev polynomials Legendre polynomial Jacobi polynomials recurrence relations 65n25 42C05 33C45
原文传递
上一页 1 下一页 到第
使用帮助 返回顶部