A simple non-isocyanate route synthesizing thermoplastic polyurethanes(TPUs) with good thermal and mechanical properties is described. Melt transurethane polycondensation of dimethyl 1,6-hexamethylene dicarbamate wi...A simple non-isocyanate route synthesizing thermoplastic polyurethanes(TPUs) with good thermal and mechanical properties is described. Melt transurethane polycondensation of dimethyl 1,6-hexamethylene dicarbamate with 1,4-butanediol and 1,6-hexanediol was conducted at different molar ratios under the catalysis of tetrabutyl titanate. A series of crystallizable non-isocyanate TPUs with high molecular weight were prepared. The TPUs were characterized by gel permeation chromatography, FT-IR, 1 H-NMR, differential scanning calorimetry, thermogravimetric analysis, wide angle X-ray diffraction, AFM, and tensile tests. The TPUs exhibited Mn ranging from 12 500 to 26 400 g/mol, Mw from 16 700 to 56 400 g/mol, Tm up to 151.4 °C, and initial decomposition temperature over 241.8 °C. Their tensile strength reached 42.99 MPa with a strain at break of 30.00%. TPUs constructed simply with butylene, hexylene, and urethane linkages were successfully synthesized through a non-isocyanate route.展开更多
The kinetics of the decomposition of dimethylhexane-1,6-dicarbamate to 1,6-hexamethylene diisocyanate was studied. A consecutive reaction model was established and the reaction orders for the two steps were confirmed ...The kinetics of the decomposition of dimethylhexane-1,6-dicarbamate to 1,6-hexamethylene diisocyanate was studied. A consecutive reaction model was established and the reaction orders for the two steps were confirmed to be 1 and 1.3 by the integral test method and the numerical differential method, respectively. The activation energies of the two steps were (56.94 4±5.90) kJ·mol^-1 and (72.07±3.47) kJ·mol^-1 with the frequency factors exp( 12.53±1.42) min^- 1 and ( 14.254±0.84) tool^-0.33. L^0.33·min^-1, respectively. Based on the kinetic model obtained, the progress of the reaction can be calculated under given conditions.展开更多
A reaction coupling system of transesterification and methoxycarbonylation with methyl phenyl carbonate (MPC) as intermediate was established to efficiently prepare 1,6-hexamethylene diurethane (HDU) from 1,6- bex...A reaction coupling system of transesterification and methoxycarbonylation with methyl phenyl carbonate (MPC) as intermediate was established to efficiently prepare 1,6-hexamethylene diurethane (HDU) from 1,6- bexametbylene diamine (HDA). The feasibility of the system was explored using the thermodynamics analysis, the reaction mechanism and the experiment results. The optimal reaction was carried out to get higher HDU yield. The thermodynamic analysis showed that the metboxycarbonylation of HDA with MPC, the Gibbs free energy of which was negative, was a spontaneous process. Furthermore, the equilibrium constant of the methoxycarbonylation of HDA with MPC was much greater than that of the transesterification of dimethyl carbonate (DMC) with phenol, so the reaction coupling could be realized under mild conditions. The reaction mechanism analysis indicated that phenoxy anion was the key spedes for reaction coupling. Higher MPC concentration was detected when sodium phenoxide was used as transesterification reactant with DMC, since the phenoxy anion of sodium phenoxide could be dissociated more easily. Sodium pbenoxide was more suitable to prepare HHDU through reaction coupling. A yield of HDU as high as 98.3% could be reached under the optimal conditions of mPhONa/mDMC = 0.027 and nDMC/nHDa = 8/1 at 90 ℃ in 2 h.展开更多
基金Funded by the National Natural Science Foundation of China(Nos.21244006 and 50873013)the Beijing Natural Science Foundation(No.2182056)
文摘A simple non-isocyanate route synthesizing thermoplastic polyurethanes(TPUs) with good thermal and mechanical properties is described. Melt transurethane polycondensation of dimethyl 1,6-hexamethylene dicarbamate with 1,4-butanediol and 1,6-hexanediol was conducted at different molar ratios under the catalysis of tetrabutyl titanate. A series of crystallizable non-isocyanate TPUs with high molecular weight were prepared. The TPUs were characterized by gel permeation chromatography, FT-IR, 1 H-NMR, differential scanning calorimetry, thermogravimetric analysis, wide angle X-ray diffraction, AFM, and tensile tests. The TPUs exhibited Mn ranging from 12 500 to 26 400 g/mol, Mw from 16 700 to 56 400 g/mol, Tm up to 151.4 °C, and initial decomposition temperature over 241.8 °C. Their tensile strength reached 42.99 MPa with a strain at break of 30.00%. TPUs constructed simply with butylene, hexylene, and urethane linkages were successfully synthesized through a non-isocyanate route.
基金the National Key Technology R&D Program(2013BAC11B03)the Knowledge Innovation Fund of Chinese Academy of Science(KGCX2-YW-215-2)the National Natural Science Foundation of China(21476244)
文摘The kinetics of the decomposition of dimethylhexane-1,6-dicarbamate to 1,6-hexamethylene diisocyanate was studied. A consecutive reaction model was established and the reaction orders for the two steps were confirmed to be 1 and 1.3 by the integral test method and the numerical differential method, respectively. The activation energies of the two steps were (56.94 4±5.90) kJ·mol^-1 and (72.07±3.47) kJ·mol^-1 with the frequency factors exp( 12.53±1.42) min^- 1 and ( 14.254±0.84) tool^-0.33. L^0.33·min^-1, respectively. Based on the kinetic model obtained, the progress of the reaction can be calculated under given conditions.
基金Supported by the National Natural Science Foundation of China(21276126,21306089)the Jiangsu Province Higher Education Natural Science Foundation(09KJA530004,13KJB530006)
文摘A reaction coupling system of transesterification and methoxycarbonylation with methyl phenyl carbonate (MPC) as intermediate was established to efficiently prepare 1,6-hexamethylene diurethane (HDU) from 1,6- bexametbylene diamine (HDA). The feasibility of the system was explored using the thermodynamics analysis, the reaction mechanism and the experiment results. The optimal reaction was carried out to get higher HDU yield. The thermodynamic analysis showed that the metboxycarbonylation of HDA with MPC, the Gibbs free energy of which was negative, was a spontaneous process. Furthermore, the equilibrium constant of the methoxycarbonylation of HDA with MPC was much greater than that of the transesterification of dimethyl carbonate (DMC) with phenol, so the reaction coupling could be realized under mild conditions. The reaction mechanism analysis indicated that phenoxy anion was the key spedes for reaction coupling. Higher MPC concentration was detected when sodium phenoxide was used as transesterification reactant with DMC, since the phenoxy anion of sodium phenoxide could be dissociated more easily. Sodium pbenoxide was more suitable to prepare HHDU through reaction coupling. A yield of HDU as high as 98.3% could be reached under the optimal conditions of mPhONa/mDMC = 0.027 and nDMC/nHDa = 8/1 at 90 ℃ in 2 h.