期刊文献+
共找到2篇文章
< 1 >
每页显示 20 50 100
DNGTz的非等温热分解动力学及热安全性 被引量:7
1
作者 胡拥鹏 赵旭芳 +6 位作者 赵宁宁 严彪 高红旭 赵凤起 胡荣祖 宋纪蓉 马海霞 《含能材料》 EI CAS CSCD 北大核心 2014年第6期767-773,共7页
合成了3,6-二硝基胍基-1,2,4,5-四嗪(DNGTz),运用差示扫描量热法(DSC)和热重法(TG-DTG)研究其热行为。以DSC曲线数据为基础,采用Kissinger法、Ozawa法和积分法研究了DNGTz的非等温热分解机理及动力学,获得DNGTz的热分解表观活化能和指... 合成了3,6-二硝基胍基-1,2,4,5-四嗪(DNGTz),运用差示扫描量热法(DSC)和热重法(TG-DTG)研究其热行为。以DSC曲线数据为基础,采用Kissinger法、Ozawa法和积分法研究了DNGTz的非等温热分解机理及动力学,获得DNGTz的热分解表观活化能和指前因子分别为187.23 k J·mol-1和1015.01s-1,其热分解机理为相边界反应,热分解机理函数的微分形式为f(α)=1。为了对DNGTz进行热安全性研究,估算得到DNGTz的密度(ρ=1.762 g·cm-3)和导热系数(λ=0.1856 W·m-1·K-1),同时应用Micro-DSC III微热量仪对DNGTz进行了比热容(cp)测定,得到了DNGTz的比热容随温度变化的方程cp(J·g-1·K-1)=-2.8805+2.1283×10-2T-2.3132×10-5T2-1.1689×10-8T3(287 K<T<352 K)。运用热分解动力学参数、机理函数及DNGTz的比热容方程、ρ和λ,计算得到DNGTz的绝热至爆时间(tTIad=8.16 s)、自加速分解温度(TSADT=249.12℃)、热点火温度(Tbe=262.31℃)和热爆炸临界温度(Tbp=277.68℃),进而计算获得半径为1 m的DNTGz几何体(无限圆柱、球或无限平板)在环境温度300 K时的热感度概率密度函数S(T)与温度(T)的关系曲线、峰值温度(TS(T)max)、热安全度(SD)、临界热爆炸环境温度(Tacr)和热爆炸概率(PTE),结果表明球形样品的热安全性稍高于无限圆柱或平板状的样品。 展开更多
关键词 物理化学 3 6-硝基基-1 2 4 5-四嗪(DNGTz) 非等温热分解动力学 热安全性 热爆炸
下载PDF
DNGTz二聚体分子间相互作用的密度泛函理论计算(英文) 被引量:2
2
作者 胡银 宁艳利 +2 位作者 康莹 宋纪蓉 马海霞 《火炸药学报》 EI CAS CSCD 北大核心 2017年第5期30-38,共9页
在DFT-B3LYP/6-31G*水平下,求得3,6-二硝基胍基-1,2,4,5-四嗪(DNGTz)二聚体势能面上9种优化几何构型和电子结构。用基组叠加误差(BSSE)和零点能(ZPE)校正,计算了分子间相互作用能,二聚体分子间最大相互作用能为-62.24kJ/mol。由自然键轨... 在DFT-B3LYP/6-31G*水平下,求得3,6-二硝基胍基-1,2,4,5-四嗪(DNGTz)二聚体势能面上9种优化几何构型和电子结构。用基组叠加误差(BSSE)和零点能(ZPE)校正,计算了分子间相互作用能,二聚体分子间最大相互作用能为-62.24kJ/mol。由自然键轨道(NBO)分析揭示了分子间相互作用的本质。对优化构型进行振动分析,并基于统计热力学求得温度200.0~800.0K从单体形成二聚体的热力学性质变化。结果表明,二聚主要由强氢键所贡献,而结合能不仅取决于氢键。二聚体Ⅰ、Ⅲ、Ⅳ、Ⅴ和Ⅶ的二聚过程在200.0K均能自发进行,表明二聚体Ⅰ、Ⅲ、Ⅳ、Ⅴ和Ⅶ在室温可以稳定存在。 展开更多
关键词 高氮含能材料 3 6-硝基基-1 2 4 5-四嗪(DNGTz) 分子间相互作用 密度泛函理论(DFT) 自然键轨道分析(NBO) 热力学性质
下载PDF
上一页 1 下一页 到第
使用帮助 返回顶部