Let∑be a convex hypersurface in the Euclidean space R4 with mean curvature H. We obtain a geometric lower bound for the Willmore functional∫∑H2dσ. This bound is an invariant involving the area of∑, the volume and...Let∑be a convex hypersurface in the Euclidean space R4 with mean curvature H. We obtain a geometric lower bound for the Willmore functional∫∑H2dσ. This bound is an invariant involving the area of∑, the volume and Minkowski quermassintegrals of the convex body that∑bounds. We also obtain a sufficient condition for a convex body to contain another in the Euclidean space R4.展开更多
基金This work was partially supported by the National Natural Science Foundation of China(Grant No.10671159)the Funds for Qualified Scientists and Technicians in Guizhou Province of China and Southwest University.
文摘Let∑be a convex hypersurface in the Euclidean space R4 with mean curvature H. We obtain a geometric lower bound for the Willmore functional∫∑H2dσ. This bound is an invariant involving the area of∑, the volume and Minkowski quermassintegrals of the convex body that∑bounds. We also obtain a sufficient condition for a convex body to contain another in the Euclidean space R4.