To analyze and solve the problem of single-side long edge of hot rolled strip in certain domestic factory, the asymmetrical deformation of rolls and strip in asymmetrical stiffness mill stand based on slit beam model,...To analyze and solve the problem of single-side long edge of hot rolled strip in certain domestic factory, the asymmetrical deformation of rolls and strip in asymmetrical stiffness mill stand based on slit beam model, the strip profile and rolling force distribution at the exit of asymmetric stiffness stand mill were calculated using influence function method. Considering the character of in-site equipment and technology, a scheme of adjusting load distribution in finishing mill was made and the experiment was applied. Comparison of strip profile between new load distribution and the old one shows that the method can solve single-side long edge problem well.展开更多
The code for calculating the crown effect rate of hot strip steel Was developed using the effect function method. The effect of the initial crown on the crown of the product in hot strip rolling was investigated. The ...The code for calculating the crown effect rate of hot strip steel Was developed using the effect function method. The effect of the initial crown on the crown of the product in hot strip rolling was investigated. The coefficients of a polynomial of degree six for calculating the base value of initial crown effect rate in 4-high mill were determined and the compensation factors of per unit width rolling force, bending force, work roll crown and draft on the initial crown effect rate were given. The difference between the calculation result by established model and theoretical value obtained by effect function method was 4.88 μm when the strip width was 1.85 m.展开更多
Software for calculating the strip profile in 4-high hot rolling mill was developed using influence coefficient method. Regularity of backup roller diameter effect rate was studied systematically using the software. T...Software for calculating the strip profile in 4-high hot rolling mill was developed using influence coefficient method. Regularity of backup roller diameter effect rate was studied systematically using the software. The results show that backup roller diameter effect rates decrease versus the increase of strip width, increase significantly versus the increase of backup roller diameter and obscurely increase versus the increase of reduction. The difference between backup roller diameter effect rate and it is reference value increases versus strip width increasing. When backup rollers diameter is set to be 1.64 m and strip width is 1.85 m, the error of strip profile calculated using the model of backup roller diameter effect rate reference value will be 3.55μm. Based on the results, reference values of roller diameter effect rate and six power polynomial fitting coefficients of modification coefficients were determined considering coherent parameters. The high precision model of backup roller diameter effect rate was established. When the model is used to predict strip profile, the accuracy is less than 5.0 μm.展开更多
文摘To analyze and solve the problem of single-side long edge of hot rolled strip in certain domestic factory, the asymmetrical deformation of rolls and strip in asymmetrical stiffness mill stand based on slit beam model, the strip profile and rolling force distribution at the exit of asymmetric stiffness stand mill were calculated using influence function method. Considering the character of in-site equipment and technology, a scheme of adjusting load distribution in finishing mill was made and the experiment was applied. Comparison of strip profile between new load distribution and the old one shows that the method can solve single-side long edge problem well.
基金This study was financially supported by the National Nat-ural Science Foundation of China under grant No.59995440the State Key Development Programming Research under grant No.G2000027208-4the Natural Science Foundar tion of Liaoning Province under grant No.2001101021.
文摘The code for calculating the crown effect rate of hot strip steel Was developed using the effect function method. The effect of the initial crown on the crown of the product in hot strip rolling was investigated. The coefficients of a polynomial of degree six for calculating the base value of initial crown effect rate in 4-high mill were determined and the compensation factors of per unit width rolling force, bending force, work roll crown and draft on the initial crown effect rate were given. The difference between the calculation result by established model and theoretical value obtained by effect function method was 4.88 μm when the strip width was 1.85 m.
基金the National Natu-ral Science Foundation of China,under the contract No.59995440the State Key Development Prograrmming Research under the contract No.G2000027208-4 the Natural Science Foundation ofLiaoning Province,under the contract No.2001101021.
文摘Software for calculating the strip profile in 4-high hot rolling mill was developed using influence coefficient method. Regularity of backup roller diameter effect rate was studied systematically using the software. The results show that backup roller diameter effect rates decrease versus the increase of strip width, increase significantly versus the increase of backup roller diameter and obscurely increase versus the increase of reduction. The difference between backup roller diameter effect rate and it is reference value increases versus strip width increasing. When backup rollers diameter is set to be 1.64 m and strip width is 1.85 m, the error of strip profile calculated using the model of backup roller diameter effect rate reference value will be 3.55μm. Based on the results, reference values of roller diameter effect rate and six power polynomial fitting coefficients of modification coefficients were determined considering coherent parameters. The high precision model of backup roller diameter effect rate was established. When the model is used to predict strip profile, the accuracy is less than 5.0 μm.