Phenolation is one of the effective strategies to synthesize lignin-based polyphenols,improve lignin’s properties,and extend its value-added applications in biological,medicinal and cosmetic fields.Herein,by taking t...Phenolation is one of the effective strategies to synthesize lignin-based polyphenols,improve lignin’s properties,and extend its value-added applications in biological,medicinal and cosmetic fields.Herein,by taking the structural feature advantage of lignin,an effective and green strategy was developed to molecularly engineer lignin into a robust lignin-3-(2-hydroxyphenyl)propionate ester(LPPE)derivative via a transesterification reaction between 3,4-dihydrocoumarin(DHC)and the aliphatic hydroxyls in lignin under organocatalysis.The strategy is optimized and the novel derivative was systematically characterized by ^(1)H,^(13)C and ^(31)P nuclear magnetic resonance(NMR)and Fourier transform infrared(FT-IR)spectroscopy.The findings indicated that the successful introduction of 3-(2-hydroxyphenyl)propionate groups using a OH groups/DHC/organic base mo-lar ratio of 1꞉1꞉0.3 at 120℃ for 6 h increased the content of phenolic hydroxyl groups from 1.7931 to 3.0179 mmol/g,and the LPPE exhibited excellent ultraviolet-absorbing and antioxidant per-formance with up to 90%free radical scavenging activity within 20 min using 5 mg/mL of LPPE.In addition,good biocompatibility and a high Sun protection factor(SPF)value of 40.9 were achieved at 5%(w)dosage of LPPE in the cream,indicating its significant application potential in sunscreen.展开更多
A convenient route for the synthesis of 3,4-dihydrocoumarin derivates from salicylaldehyde derivates and 1,3-dicarbonyl compounds under solvent-free microwave irradiation conditions was described. In this way, a range...A convenient route for the synthesis of 3,4-dihydrocoumarin derivates from salicylaldehyde derivates and 1,3-dicarbonyl compounds under solvent-free microwave irradiation conditions was described. In this way, a range of compounds was obtained in moderate to good yields in a short reaction time.展开更多
基金supported by National Natural Science Foundation of China(No.22275041No.21774028,No.21574030)+4 种基金Science and Technology Department of Guizhou Province&Guizhou University Joint FundScience and Technology Department of Guizhou Province(Natural Science Key Fund ZK[2021]023Platform&Talents[2016]5652,[2017]5788,[2018]5781,and[2019]5607)Introduced Talent Research Project of Guizhou University([2022]16)LETSGrp2020042402 and Basic research project of Guizhou University([2023]01).
文摘Phenolation is one of the effective strategies to synthesize lignin-based polyphenols,improve lignin’s properties,and extend its value-added applications in biological,medicinal and cosmetic fields.Herein,by taking the structural feature advantage of lignin,an effective and green strategy was developed to molecularly engineer lignin into a robust lignin-3-(2-hydroxyphenyl)propionate ester(LPPE)derivative via a transesterification reaction between 3,4-dihydrocoumarin(DHC)and the aliphatic hydroxyls in lignin under organocatalysis.The strategy is optimized and the novel derivative was systematically characterized by ^(1)H,^(13)C and ^(31)P nuclear magnetic resonance(NMR)and Fourier transform infrared(FT-IR)spectroscopy.The findings indicated that the successful introduction of 3-(2-hydroxyphenyl)propionate groups using a OH groups/DHC/organic base mo-lar ratio of 1꞉1꞉0.3 at 120℃ for 6 h increased the content of phenolic hydroxyl groups from 1.7931 to 3.0179 mmol/g,and the LPPE exhibited excellent ultraviolet-absorbing and antioxidant per-formance with up to 90%free radical scavenging activity within 20 min using 5 mg/mL of LPPE.In addition,good biocompatibility and a high Sun protection factor(SPF)value of 40.9 were achieved at 5%(w)dosage of LPPE in the cream,indicating its significant application potential in sunscreen.
基金the National Natural Science Foundation of China(No.20702023)Special Fund for DoctoralProgram from the Ministry of Education of China(No.20070730040)for financial support.
文摘A convenient route for the synthesis of 3,4-dihydrocoumarin derivates from salicylaldehyde derivates and 1,3-dicarbonyl compounds under solvent-free microwave irradiation conditions was described. In this way, a range of compounds was obtained in moderate to good yields in a short reaction time.