Heterogeneity of biological samples is usually considered a major obstacle for three-dimensional (3D) structure determination of macromolecular complexes. Heterogeneity may occur at the level of composition or conform...Heterogeneity of biological samples is usually considered a major obstacle for three-dimensional (3D) structure determination of macromolecular complexes. Heterogeneity may occur at the level of composition or conformational variability of complexes and affects most 3D structure determination methods that rely on signal averaging. Here, an approach is described that allows sorting structural states based on a 3D statistical approach, the 3D sampling and classification (3D-SC) of 3D structures derived from single particles imaged by cryo electron microscopy (cryo-EM). The method is based on jackknifing & bootstrapping of 3D sub-ensembles and 3D multivariate statistical analysis followed by 3D classification. The robustness of the statistical sorting procedure is corroborated using model data from an RNA polymerase structure and experimental data from a ribosome complex. It allows resolving multiple states within heterogeneous complexes that thus become amendable for a structural analysis despite of their highly flexible nature. The method has important implications for high-resolution structural studies and allows describing structure ensembles to provide insights into the dynamics of multi-component macromolecular assemblies.展开更多
The static recrystallization behavior of 7075 aluminum alloy containing Al_(3)(Sc,Zr)phase prepared by casting and the relationship between recrystallization behavior and mechanical properties were studied.The additio...The static recrystallization behavior of 7075 aluminum alloy containing Al_(3)(Sc,Zr)phase prepared by casting and the relationship between recrystallization behavior and mechanical properties were studied.The addition of Sc and Zr made the Sc−Zr−7075 aluminum alloy remain the most of fibrous structure and high-density dislocations formed in the extrusion process,resulting in the recrystallization fraction of the alloy decreasing from 35%to 22%,and the corresponding fraction of substructure increasing from 59%to 67%.The Sc and Zr effectively inhibited the recrystallization behavior of 7075 aluminum alloy mainly,which was attributed to the fact that the existence of fine and coherent Al_(3)(Sc,Zr)phase(r=35 nm,f=1.8×10^(−3))strongly pined the dislocations and grain boundaries,preventing the dislocations from rearranging into sub-grain boundaries and from developing into high angle grain boundaries,and further hindering the formation and growth of recrystallized core of the alloy.展开更多
Microstructure and its thermal stability are critical in the development of high-performance Al-Mg alloys.Here,we attempt to tailor Al_(3)(Sc,Zr)precipitates and thus microstructure characteristics to manipulate mecha...Microstructure and its thermal stability are critical in the development of high-performance Al-Mg alloys.Here,we attempt to tailor Al_(3)(Sc,Zr)precipitates and thus microstructure characteristics to manipulate mechanical properties and microstructural stability of Al-7Mg alloys fabricated by hot extrusion com-bined with two-pass hard-plate rolling via changing Sc/Zr ratio.Increasing Sc/Zr ratio leads to improved strength without any loss of ductility.A strength-ductility synergy,i.e.yield strength of∼548 MPa and ultimate tensile strength of∼605 MPa with an impressive ductility of∼10%elongation was achieved in the Al-7Mg-0.3Sc-0.1Zr alloy.The good strength-ductility synergy is ascribed to the multi-scale het-erogeneous microstructure promoted by the high Sc/Zr ratio,i.e.a bimodal grain structure,profuse low angle grain boundaries,dispersed nano-sized Al_(3)(Sc,Zr)precipitates coexisting with intragranular Mg-Zr co-clusters segregated at dislocations.Upon thermal exposure,the Al-7Mg-0.3Sc-0.1Zr alloy maintained higher hardness at below 250°C,whereas Al-7Mg-0.2Sc-0.2Zr and Al-7Mg-0.1Sc-0.3Zr alloys exhibited higher hardness in moderate-and high-temperature range of 250-350℃and≥400℃,respectively.Atom-probe tomography analysis illustrates that slow-diffusing Zr atoms enhance Al_(3)(Sc,Zr)coarsening resistance through forming a higher-content Zr-enriched protective shell around a Sc-enriched core in Al-7Mg-0.1Sc-0.3Zr.Meanwhile,the high Zr content promotes concurrent Al_(3)(Sc,Zr)precipitation during thermal exposure at high temperatures.The improved microstructural thermal stability in Al-7Mg-0.1Sc-0.3Zr alloy is further discussed in terms of the recrystallization resistance and grain growth behavior.The present study reveals the feasibility for designing high-strength and thermally stable hetero-structured Al-Mg-Sc-Zr alloys via tailoring Sc/Zr ratios for different application temperature ranges.展开更多
By using a reflective graphene oxide as saturable absorber, a diode-pumped passively mode-locked Yb^3+:Sc2Si O5(Yb:SSO) laser has been demonstrated for the first time. Without extra negative dispersion compensati...By using a reflective graphene oxide as saturable absorber, a diode-pumped passively mode-locked Yb^3+:Sc2Si O5(Yb:SSO) laser has been demonstrated for the first time. Without extra negative dispersion compensation, the minimum pulse duration of 1.7 ps with a repetition rate of 94 MHz was obtained at the central wavelength of 1062.6 nm. The average output power amounts to 355 m W under the absorbed pump power of 15 W. The maximum peak power of the mode-locking laser is up to 2.2 k W, and the single pulse energy is 3.8nJ.展开更多
The effects of minor Sc and Zr additions on the mechanical properties and microstructure evolution of Al Zn Mg Cu alloys were studied using tensile tests, scanning electron microscopy (SEM) and transmission electron m...The effects of minor Sc and Zr additions on the mechanical properties and microstructure evolution of Al Zn Mg Cu alloys were studied using tensile tests, scanning electron microscopy (SEM) and transmission electron microscopy (TEM). The ultimate tensile strength of the peak-aged Al Zn Mg Cu alloy is improved by about 105 MPa with the addition of 0.10% Zr. An increase of about 133 MPa is observed with the joint addition of 0.07% Sc and 0.07% Zr. For the alloys modified with the minor addition of Sc and Zr (0.14%), the main strengthening mechanisms of minor addition of Sc and Zr are fine-grain strengthening, sub-structure strengthening and the Orowan strengthening mechanism produced by the Al3(Sc,Zr) and Al3Zr dispersoids. The volume of Al3Zr particles is less than that of Al3(Sc,Zr) particles, but the distribution of Al3(Sc,Zr) particles is more dispersed throughout the matrix leading to pinning the dislocations motion and restraining the recrystallization more effectively.展开更多
文摘Heterogeneity of biological samples is usually considered a major obstacle for three-dimensional (3D) structure determination of macromolecular complexes. Heterogeneity may occur at the level of composition or conformational variability of complexes and affects most 3D structure determination methods that rely on signal averaging. Here, an approach is described that allows sorting structural states based on a 3D statistical approach, the 3D sampling and classification (3D-SC) of 3D structures derived from single particles imaged by cryo electron microscopy (cryo-EM). The method is based on jackknifing & bootstrapping of 3D sub-ensembles and 3D multivariate statistical analysis followed by 3D classification. The robustness of the statistical sorting procedure is corroborated using model data from an RNA polymerase structure and experimental data from a ribosome complex. It allows resolving multiple states within heterogeneous complexes that thus become amendable for a structural analysis despite of their highly flexible nature. The method has important implications for high-resolution structural studies and allows describing structure ensembles to provide insights into the dynamics of multi-component macromolecular assemblies.
基金The authors are grateful for the financial supports from the National Natural Science Foundation of China(No.51871111)the Natural Science Foundation of Shandong Province,China(No.ZR2018LE001)+1 种基金the Science and Technology Program of University of Ji’nan,China(Nos.XKY2036,XKY1713)the Key Research and Development Program of Shandong Province,China(No.2019GGX102008).
文摘The static recrystallization behavior of 7075 aluminum alloy containing Al_(3)(Sc,Zr)phase prepared by casting and the relationship between recrystallization behavior and mechanical properties were studied.The addition of Sc and Zr made the Sc−Zr−7075 aluminum alloy remain the most of fibrous structure and high-density dislocations formed in the extrusion process,resulting in the recrystallization fraction of the alloy decreasing from 35%to 22%,and the corresponding fraction of substructure increasing from 59%to 67%.The Sc and Zr effectively inhibited the recrystallization behavior of 7075 aluminum alloy mainly,which was attributed to the fact that the existence of fine and coherent Al_(3)(Sc,Zr)phase(r=35 nm,f=1.8×10^(−3))strongly pined the dislocations and grain boundaries,preventing the dislocations from rearranging into sub-grain boundaries and from developing into high angle grain boundaries,and further hindering the formation and growth of recrystallized core of the alloy.
基金supported by the Natural Science Foundation of China(Nos.51922048,52234009 and 51871108)Partial financial support from the Changjiang Scholars Program(No.T2017035)+1 种基金the Science and Technology Development Program of Jilin Province(No.20200401030GX)the Natural Science Foundation of Jiangsu Province(No.BK 20220629)was greatly acknowledged.
文摘Microstructure and its thermal stability are critical in the development of high-performance Al-Mg alloys.Here,we attempt to tailor Al_(3)(Sc,Zr)precipitates and thus microstructure characteristics to manipulate mechanical properties and microstructural stability of Al-7Mg alloys fabricated by hot extrusion com-bined with two-pass hard-plate rolling via changing Sc/Zr ratio.Increasing Sc/Zr ratio leads to improved strength without any loss of ductility.A strength-ductility synergy,i.e.yield strength of∼548 MPa and ultimate tensile strength of∼605 MPa with an impressive ductility of∼10%elongation was achieved in the Al-7Mg-0.3Sc-0.1Zr alloy.The good strength-ductility synergy is ascribed to the multi-scale het-erogeneous microstructure promoted by the high Sc/Zr ratio,i.e.a bimodal grain structure,profuse low angle grain boundaries,dispersed nano-sized Al_(3)(Sc,Zr)precipitates coexisting with intragranular Mg-Zr co-clusters segregated at dislocations.Upon thermal exposure,the Al-7Mg-0.3Sc-0.1Zr alloy maintained higher hardness at below 250°C,whereas Al-7Mg-0.2Sc-0.2Zr and Al-7Mg-0.1Sc-0.3Zr alloys exhibited higher hardness in moderate-and high-temperature range of 250-350℃and≥400℃,respectively.Atom-probe tomography analysis illustrates that slow-diffusing Zr atoms enhance Al_(3)(Sc,Zr)coarsening resistance through forming a higher-content Zr-enriched protective shell around a Sc-enriched core in Al-7Mg-0.1Sc-0.3Zr.Meanwhile,the high Zr content promotes concurrent Al_(3)(Sc,Zr)precipitation during thermal exposure at high temperatures.The improved microstructural thermal stability in Al-7Mg-0.1Sc-0.3Zr alloy is further discussed in terms of the recrystallization resistance and grain growth behavior.The present study reveals the feasibility for designing high-strength and thermally stable hetero-structured Al-Mg-Sc-Zr alloys via tailoring Sc/Zr ratios for different application temperature ranges.
基金Project supported by the National Natural Science Foundation of China(Grant Nos.61078032,61378024,60938001,and 61078053)the Science and Technology Development Projects of Shandong Province,China(Grant No.2013GGX10108)
文摘By using a reflective graphene oxide as saturable absorber, a diode-pumped passively mode-locked Yb^3+:Sc2Si O5(Yb:SSO) laser has been demonstrated for the first time. Without extra negative dispersion compensation, the minimum pulse duration of 1.7 ps with a repetition rate of 94 MHz was obtained at the central wavelength of 1062.6 nm. The average output power amounts to 355 m W under the absorbed pump power of 15 W. The maximum peak power of the mode-locking laser is up to 2.2 k W, and the single pulse energy is 3.8nJ.
基金Project (2016B090931004) supported by the Scientific and Research Plan of Guangdong Province, ChinaProject (51601229) supported by the National Natural Science Foundation of China。
文摘The effects of minor Sc and Zr additions on the mechanical properties and microstructure evolution of Al Zn Mg Cu alloys were studied using tensile tests, scanning electron microscopy (SEM) and transmission electron microscopy (TEM). The ultimate tensile strength of the peak-aged Al Zn Mg Cu alloy is improved by about 105 MPa with the addition of 0.10% Zr. An increase of about 133 MPa is observed with the joint addition of 0.07% Sc and 0.07% Zr. For the alloys modified with the minor addition of Sc and Zr (0.14%), the main strengthening mechanisms of minor addition of Sc and Zr are fine-grain strengthening, sub-structure strengthening and the Orowan strengthening mechanism produced by the Al3(Sc,Zr) and Al3Zr dispersoids. The volume of Al3Zr particles is less than that of Al3(Sc,Zr) particles, but the distribution of Al3(Sc,Zr) particles is more dispersed throughout the matrix leading to pinning the dislocations motion and restraining the recrystallization more effectively.