We propose a new structure for artificial joints with a joint capsule which is designed to overcome the drawback of current prostheses that omit many functions of the lubricant and the joint capsule. The new structure...We propose a new structure for artificial joints with a joint capsule which is designed to overcome the drawback of current prostheses that omit many functions of the lubricant and the joint capsule. The new structure is composed of three components: lubricant, artificial joint and artificial joint capsule. The lubricant sealed in the capsule can not only reduce the wear of the artificial joint but also prevents the wear particles leaking into the body. So unexpected reactions between the wear particles and body can be avoided completely. A three-dimensional (3-D) finite element analysis (FEA) model was created for a bionic knee joint with capsule. The stresses and their distribution in the artificial capsule were simulated with different thickness, loadings, and flexion angles. The results show that the maximum stress occurs in the area between the artificial joint and the capsule. The effects of capsule thickness and the angles of flexion on stress are discussed in detail.展开更多
无轭分块电枢轴向磁场永磁电机(Yokeless and Segmented Armature Machine,YASA)是一种高功率密度、高效率的电机,适于电牵引驱动特别是电动车的轮毂和轮边直驱。本文针对基于软磁复合材料(SMC)的YASA电机的齿槽转矩进行研究。首先比较...无轭分块电枢轴向磁场永磁电机(Yokeless and Segmented Armature Machine,YASA)是一种高功率密度、高效率的电机,适于电牵引驱动特别是电动车的轮毂和轮边直驱。本文针对基于软磁复合材料(SMC)的YASA电机的齿槽转矩进行研究。首先比较了基于SMC和叠压硅钢材料的YASA电机齿槽转矩波形,然后分析了永磁体极弧系数、永磁体斜极、定子齿靴宽度系数以及定子齿靴偏移对基于SMC的YASA电机齿槽转矩的影响,在此基础上建立响应面模型并利用遗传算法对齿槽转矩进行优化,最后,通过3-D FEM验证了优化结果的准确性。结果表明,在选取一定极弧系数的前提下,存在最优的永磁体斜极角度、定子齿靴宽度系数和定子齿靴偏移角度组合能够使电机的齿槽转矩降为最小,且优化前后电机的其他性能基本保持不变。展开更多
基金This work has been financially supported by the National Science Foundation of China through the grant number of 50105014,"Bionic Lubrication System of Artificial Joints"The corresponding author,Dr.J H Zhang,would also like to acknowledge the financial support provided by the Science and Technology Committee of Shanghai under the grant number of 04 QMX1442partially financial support by Shanghai Leading Academic Discipline Project,Project Number:Y0102.
文摘We propose a new structure for artificial joints with a joint capsule which is designed to overcome the drawback of current prostheses that omit many functions of the lubricant and the joint capsule. The new structure is composed of three components: lubricant, artificial joint and artificial joint capsule. The lubricant sealed in the capsule can not only reduce the wear of the artificial joint but also prevents the wear particles leaking into the body. So unexpected reactions between the wear particles and body can be avoided completely. A three-dimensional (3-D) finite element analysis (FEA) model was created for a bionic knee joint with capsule. The stresses and their distribution in the artificial capsule were simulated with different thickness, loadings, and flexion angles. The results show that the maximum stress occurs in the area between the artificial joint and the capsule. The effects of capsule thickness and the angles of flexion on stress are discussed in detail.