期刊文献+
共找到1篇文章
< 1 >
每页显示 20 50 100
基于3D分层卷积融合的多模态生理信号情绪识别 被引量:4
1
作者 凌文芬 陈思含 +1 位作者 彭勇 孔万增 《智能科学与技术学报》 2021年第1期76-84,共9页
近年来,脑电等生理信号由于能客观体现真实情绪已逐渐成为情绪识别研究的热门对象。然而,单模态的脑电信号存在情绪信息特征不完备问题,多模态生理信号存在情绪信息交互不充分问题。针对这些问题,提出基于3D分层卷积的多模态特征融合模... 近年来,脑电等生理信号由于能客观体现真实情绪已逐渐成为情绪识别研究的热门对象。然而,单模态的脑电信号存在情绪信息特征不完备问题,多模态生理信号存在情绪信息交互不充分问题。针对这些问题,提出基于3D分层卷积的多模态特征融合模型,旨在充分挖掘多模态交互关系,更准确地刻画情感信息。首先通过深度可分离卷积网络提取脑电、眼电和肌电3种模态的生理信号的多模态初级情绪特征信息,再对得到的多模态初级情绪特征信息进行3D卷积融合操作,实现两两模态间的局部交互以及所有模态间的全局交互,获取包含不同生理信号情绪特征的多模态融合特征。实验结果表明,提出的模型在DEAP数据集的效价、唤醒度的二分类和四分类任务中达到了98%的平均准确率。 展开更多
关键词 生理信号 情绪识别 3D分层卷积 多模态交互
下载PDF
上一页 1 下一页 到第
使用帮助 返回顶部