Numerical simulations and the control of self-propelled swimming of three-dimensional bionic fish in a viscous flow and the mechanism of fish swimming are carried out in this study,with a 3D computational fluid dynami...Numerical simulations and the control of self-propelled swimming of three-dimensional bionic fish in a viscous flow and the mechanism of fish swimming are carried out in this study,with a 3D computational fluid dynamics package,which includes the immersed boundary method and the volume of fluid method,the adaptive multi-grid finite volume method,and the control strategy of fish swimming.Firstly,the mechanism of 3D fish swimming was studied and the vorticity dynamics root was traced to the moving body surface by using the boundary vorticity-flux theory.With the change of swimming speed,the contributions of the fish body and caudal fin to thrust are analyzed quantitatively.The relationship between vortex structures of fish swimming and the forces exerted on the fish body are also given in this paper.Finally,the 3D wake structure of self-propelled swimming of 3D bionic fish is presented.The in-depth analysis of the 3D vortex structure in the role of 3D biomimetic fish swimming is also performed.展开更多
This article gives a general model using specific periodic special functions, that is, degenerate elliptic Weierstrass P functions composed with the LambertW function, whose presence in the governing equations through...This article gives a general model using specific periodic special functions, that is, degenerate elliptic Weierstrass P functions composed with the LambertW function, whose presence in the governing equations through the forcing terms simplify the periodic Navier Stokes equations (PNS) at the centers of arbitrary r balls of the 3-Torus. The continuity equation is satisfied together with spatially periodic boundary conditions. The yicomponent forcing terms consist of a function F as part of its expression that is arbitrarily small in an r ball where it is associated with a singular forcing expression both for inviscid and viscous cases. As a result, a significant simplification occurs with a v3(vifor all velocity components) only governing PDE resulting. The extension of three restricted subspaces in each of the principal directions in the Cartesian plane is shown as the Cartesian product ℋ=Jx,t×Jy,t×Jz,t. On each of these subspaces vi,i=1,2,3is continuous and there exists a linear independent subspace associated with the argument of the W function. Here the 3-Torus is built up from each compact segment of length 2R on each of the axes on the 3 principal directions x, y, and z. The form of the scaled velocities for non zero scaled δis related to the definition of the W function such that e−W(ξ)=W(ξ)ξwhere ξdepends on t and proportional to δ→0for infinite time t. The ratio Wξis equal to 1, making the limit δ→0finite and well defined. Considering r balls where the function F=(x−ai)2+(y−bi)2+(z−ci)2−ηset equal to −1e+rwhere r>0. is such that the forcing is singular at every distance r of centres of cubes each containing an r-ball. At the centre of the balls, the forcing is infinite. The main idea is that a system of singular initial value problems with infinite forcing is to be solved for where the velocities are shown to be locally Hölder continuous. It is proven that the limit of these singular problems shifts the finite time blowup time ti∗for first and higher derivatives to t=∞t展开更多
This paper investigates an important high-dimensional model in the atmospheric and oceanic dynamics-(3+1)- dimensional nonlinear baroclinic potential vorticity equation by the classical Lie group method. Its symmet...This paper investigates an important high-dimensional model in the atmospheric and oceanic dynamics-(3+1)- dimensional nonlinear baroclinic potential vorticity equation by the classical Lie group method. Its symmetry algebra, symmetry group and group-invariant solutions are analysed. Otherwise, some exact explicit solutions are obtained from the corresponding (2+1)-dimensional equation, the inviscid barotropic nondivergent vorticy equation. To show the properties and characters of these solutions, some plots as well as their possible physical meanings of the atmospheric circulation are given out.展开更多
基金the support of National Natural Science Foundation of China (Grant No.10672183)
文摘Numerical simulations and the control of self-propelled swimming of three-dimensional bionic fish in a viscous flow and the mechanism of fish swimming are carried out in this study,with a 3D computational fluid dynamics package,which includes the immersed boundary method and the volume of fluid method,the adaptive multi-grid finite volume method,and the control strategy of fish swimming.Firstly,the mechanism of 3D fish swimming was studied and the vorticity dynamics root was traced to the moving body surface by using the boundary vorticity-flux theory.With the change of swimming speed,the contributions of the fish body and caudal fin to thrust are analyzed quantitatively.The relationship between vortex structures of fish swimming and the forces exerted on the fish body are also given in this paper.Finally,the 3D wake structure of self-propelled swimming of 3D bionic fish is presented.The in-depth analysis of the 3D vortex structure in the role of 3D biomimetic fish swimming is also performed.
文摘This article gives a general model using specific periodic special functions, that is, degenerate elliptic Weierstrass P functions composed with the LambertW function, whose presence in the governing equations through the forcing terms simplify the periodic Navier Stokes equations (PNS) at the centers of arbitrary r balls of the 3-Torus. The continuity equation is satisfied together with spatially periodic boundary conditions. The yicomponent forcing terms consist of a function F as part of its expression that is arbitrarily small in an r ball where it is associated with a singular forcing expression both for inviscid and viscous cases. As a result, a significant simplification occurs with a v3(vifor all velocity components) only governing PDE resulting. The extension of three restricted subspaces in each of the principal directions in the Cartesian plane is shown as the Cartesian product ℋ=Jx,t×Jy,t×Jz,t. On each of these subspaces vi,i=1,2,3is continuous and there exists a linear independent subspace associated with the argument of the W function. Here the 3-Torus is built up from each compact segment of length 2R on each of the axes on the 3 principal directions x, y, and z. The form of the scaled velocities for non zero scaled δis related to the definition of the W function such that e−W(ξ)=W(ξ)ξwhere ξdepends on t and proportional to δ→0for infinite time t. The ratio Wξis equal to 1, making the limit δ→0finite and well defined. Considering r balls where the function F=(x−ai)2+(y−bi)2+(z−ci)2−ηset equal to −1e+rwhere r>0. is such that the forcing is singular at every distance r of centres of cubes each containing an r-ball. At the centre of the balls, the forcing is infinite. The main idea is that a system of singular initial value problems with infinite forcing is to be solved for where the velocities are shown to be locally Hölder continuous. It is proven that the limit of these singular problems shifts the finite time blowup time ti∗for first and higher derivatives to t=∞t
基金Project supported by the National Natural Science Foundation of China(Grant Nos.10735030,90718041 and 40975038)Shanghai Leading Academic Discipline Project(Grant No.B412)Program for Changjiang Scholars and Innovative Research Team in University(Grant No.IRT0734)
文摘This paper investigates an important high-dimensional model in the atmospheric and oceanic dynamics-(3+1)- dimensional nonlinear baroclinic potential vorticity equation by the classical Lie group method. Its symmetry algebra, symmetry group and group-invariant solutions are analysed. Otherwise, some exact explicit solutions are obtained from the corresponding (2+1)-dimensional equation, the inviscid barotropic nondivergent vorticy equation. To show the properties and characters of these solutions, some plots as well as their possible physical meanings of the atmospheric circulation are given out.