In this paper,a novel compression framework based on 3D point cloud data is proposed for telepresence,which consists of two parts.One is implemented to remove the spatial redundancy,i.e.,a robust Bayesian framework is...In this paper,a novel compression framework based on 3D point cloud data is proposed for telepresence,which consists of two parts.One is implemented to remove the spatial redundancy,i.e.,a robust Bayesian framework is designed to track the human motion and the 3D point cloud data of the human body is acquired by using the tracking 2D box.The other part is applied to remove the temporal redundancy of the 3D point cloud data.The temporal redundancy between point clouds is removed by using the motion vector,i.e.,the most similar cluster in the previous frame is found for the cluster in the current frame by comparing the cluster feature and the cluster in the current frame is replaced by the motion vector for compressing the current frame.The hrst,the B-SHOT(binary signatures of histograms orientation)descriptor is applied to represent the point feature for matching the corresponding point between two frames.The second,the K-mean algorithm is used to generate the cluster because there are a lot of unsuccessfully matched points in the current frame.The matching operation is exploited to find the corresponding clusters between the point cloud data of two frames.Finally,the cluster information in the current frame is replaced by the motion vector for compressing the current frame and the unsuccessfully matched clusters in the curren t and the motion vectors are transmit ted into the rem ote end.In order to reduce calculation time of the B-SHOT descriptor,we introduce an octree structure into the B-SHOT descriptor.In particular,in order to improve the robustness of the matching operation,we design the cluster feature to estimate the similarity bet ween two clusters.Experimen tai results have shown the bet ter performance of the proposed method due to the lower calculation time and the higher compression ratio.The proposed met hod achieves the compression ratio of 8.42 and the delay time of 1228 ms compared with the compression ratio of 5.99 and the delay time of 2163 ms in the octree-based compression method under condit展开更多
Estimating the global position of a road vehicle without using GPS is a challenge that many scientists look forward to solving in the near future. Normally, inertial and odometry sensors are used to complement GPS mea...Estimating the global position of a road vehicle without using GPS is a challenge that many scientists look forward to solving in the near future. Normally, inertial and odometry sensors are used to complement GPS measures in an attempt to provide a means for maintaining vehicle odometry during GPS outage. Nonetheless, recent experiments have demonstrated that computer vision can also be used as a valuable source to provide what can be denoted as visual odometry. For this purpose, vehicle motion can be estimated using a non-linear, photogrametric approach based on RAndom SAmple Consensus (RANSAC). The results prove that the detection and selection of relevant feature points is a crucial factor in the global performance of the visual odometry algorithm. The key issues for further improvement are discussed in this letter.展开更多
基金This work was supported by National Nature Science Foundation of China(No.61811530281 and 61861136009)Guangdong Regional Joint Foundation(No.2019B1515120076)the Fundamental Research for the Central Universities.
文摘In this paper,a novel compression framework based on 3D point cloud data is proposed for telepresence,which consists of two parts.One is implemented to remove the spatial redundancy,i.e.,a robust Bayesian framework is designed to track the human motion and the 3D point cloud data of the human body is acquired by using the tracking 2D box.The other part is applied to remove the temporal redundancy of the 3D point cloud data.The temporal redundancy between point clouds is removed by using the motion vector,i.e.,the most similar cluster in the previous frame is found for the cluster in the current frame by comparing the cluster feature and the cluster in the current frame is replaced by the motion vector for compressing the current frame.The hrst,the B-SHOT(binary signatures of histograms orientation)descriptor is applied to represent the point feature for matching the corresponding point between two frames.The second,the K-mean algorithm is used to generate the cluster because there are a lot of unsuccessfully matched points in the current frame.The matching operation is exploited to find the corresponding clusters between the point cloud data of two frames.Finally,the cluster information in the current frame is replaced by the motion vector for compressing the current frame and the unsuccessfully matched clusters in the curren t and the motion vectors are transmit ted into the rem ote end.In order to reduce calculation time of the B-SHOT descriptor,we introduce an octree structure into the B-SHOT descriptor.In particular,in order to improve the robustness of the matching operation,we design the cluster feature to estimate the similarity bet ween two clusters.Experimen tai results have shown the bet ter performance of the proposed method due to the lower calculation time and the higher compression ratio.The proposed met hod achieves the compression ratio of 8.42 and the delay time of 1228 ms compared with the compression ratio of 5.99 and the delay time of 2163 ms in the octree-based compression method under condit
文摘Estimating the global position of a road vehicle without using GPS is a challenge that many scientists look forward to solving in the near future. Normally, inertial and odometry sensors are used to complement GPS measures in an attempt to provide a means for maintaining vehicle odometry during GPS outage. Nonetheless, recent experiments have demonstrated that computer vision can also be used as a valuable source to provide what can be denoted as visual odometry. For this purpose, vehicle motion can be estimated using a non-linear, photogrametric approach based on RAndom SAmple Consensus (RANSAC). The results prove that the detection and selection of relevant feature points is a crucial factor in the global performance of the visual odometry algorithm. The key issues for further improvement are discussed in this letter.