Liver-tissue engineering has proven valuable in treating liver diseases,but the construction of liver tissues with high fidelity remains challenging.Here,we present a novel three-dimensional(3D)-imprinted cell-sheet s...Liver-tissue engineering has proven valuable in treating liver diseases,but the construction of liver tissues with high fidelity remains challenging.Here,we present a novel three-dimensional(3D)-imprinted cell-sheet strategy for the synchronous construction of biomimetic hepatic microtissues with high accuracy in terms of cell type,density,and distribution.To achieve this,the specific composition of hepatic cells in a normal human liver was determined using a spatial proteogenomics dataset.The data and biomimetic hepatic micro-tissues with hexagonal hollow cross-sections indicate that cell information was successfully generated using a homemade 3D-imprinted device for layer-by-layer imprinting and assembling the hepatic cell sheets.By infiltrating vascular endothelial cells into the hollow section of the assembly,biomimetic hepatic microtissues with vascularized channels for nutrient diffusion and drug perfusion can be obtained.We demonstrate that the resultant vascularized biomimetic hepatic micro-tissues can not only be integrated into a microfluidic drug-screening liver-on-a-chip but also assembled into an enlarged physiological structure to promote liver regeneration.We believe that our 3D-imprinted cell sheets strategy will open new avenues for biomimetic microtissue construction.展开更多
Recently, the investigation of novel molecularly imprinted polymers(MIPs) has attracted a lot of interest and becomes a fascinating field. The phenobarbital(PHN) was taken as an imprinted molecule and the 2-vinyl-...Recently, the investigation of novel molecularly imprinted polymers(MIPs) has attracted a lot of interest and becomes a fascinating field. The phenobarbital(PHN) was taken as an imprinted molecule and the 2-vinyl-4,6-diamino-1,3,5-triazine(VDAT) was considered as a functional monomer in this study. The geometry optimization, natural bond orbital(NBO) charge, and molecular electrostatic potential(MEP) of PHN and VDAT were studied at the M062 X level belonging to one of the hybrid density functional theories. Furthermore, we discussed the bonding conditions of PHN molecular imprinted polymers(PHN-MIPs) via the hydrogen bond length and atoms in molecules(AIM) theory. The rebinding property of PHN-MIPs was also researched. The results of MEP and NBO charge analysis were coincident. The stability property was excellent when the ratio of PHN and VDAT was 1:4. Except the classic hydrogen bonds, non-classical hydrogen bonds also existed in the imprinted polymers. By simulating the rebinding energies between the pentobarbital(PNT), barbital(BAR), and PHN-MIPs after the elution of PHN, the rebinding property of PHN-MIPs to PHN was excellent when PNT and BAR existed all at once. This research can provide theoretical reference for the synthesis and characterization of novel PHN-MIPs.展开更多
In this letter,N-acryloyl-3-aminophenylboronic acid(AAPBA) was synthesized and then examined as a new functional monomer for protein imprinting.It was allowed to be copolymerized with acrylamide to produce hemoglobi...In this letter,N-acryloyl-3-aminophenylboronic acid(AAPBA) was synthesized and then examined as a new functional monomer for protein imprinting.It was allowed to be copolymerized with acrylamide to produce hemoglobin- or lysozyme-imprinted hydrogels.In template rebinding tests,the imprinted gels showed significant increase in the specific binding with the increase of the AAPBA amounts in the prepolymerization recipes.These results indicate that AAPBA may be a useful functional monomer for its moderate interactions with protein molecules.展开更多
In this research, a surface imprinting strategy has been adopted in protein imprinting. Bovine hemo-globin surface-imprinted polystyrene (PS) nanoparticles with magnetic susceptibility have been syn-thesized through m...In this research, a surface imprinting strategy has been adopted in protein imprinting. Bovine hemo-globin surface-imprinted polystyrene (PS) nanoparticles with magnetic susceptibility have been syn-thesized through multistage core-shell polymerization system using 3-aminophenylboronic acid (APBA) as functional and cross-linking monomers. Superparamagnetic molecularly imprinted polystyrene nanospheres with poly(APBA) thin films have been synthesized and used for the first time for protein molecular imprinting in an aqueous solution. The magnetic susceptibility is imparted through the successful encapsulation of Fe3O4 nanoparticles. The morphology, adsorption, and recognition prop-erties of superparamagnetic molecularly imprinted polymers (MIPs) have been investigated using transmission electron microscopy, X-ray diffraction, thermogravimetric analysis, and vibrating sample magnetometer. Rebinding experimental results show that poly(APBA) MIPs-coated superparamagnetic PS nanoparticles have high adsorption capacity for template protein bovine hemoglobin and compara-tively low nonspecific adsorption. The imprinted superparamagnetic nanoparticles could easily reach the adsorption equilibrium and achieve magnetic separation in an external magnetic field, thus avoid-ing some problems of the bulk polymer.展开更多
基金supported by the National Natural Science Foundation of China(T2225003,and 82100664)the National Key Research and Development Program of China(2022YFA1105300)+4 种基金the Jiangsu Provincial Science and Technology Special Fund for Outstanding Young Scholars(BK20230051)the Nanjing Health Science and Technology Development Project for Distinguished Young Scholars(JQX22003)the Nanjing Medical Science and Technique Development Foundation(ZKX21019)the Clinical Trials from Nanjing Drum Tower Hospital(2022-LCYJ-ZD-01,and 2021-LCYJ-PY-46)the Guangdong Basic and Applied Basic Research Foundation(2021B1515120054).
文摘Liver-tissue engineering has proven valuable in treating liver diseases,but the construction of liver tissues with high fidelity remains challenging.Here,we present a novel three-dimensional(3D)-imprinted cell-sheet strategy for the synchronous construction of biomimetic hepatic microtissues with high accuracy in terms of cell type,density,and distribution.To achieve this,the specific composition of hepatic cells in a normal human liver was determined using a spatial proteogenomics dataset.The data and biomimetic hepatic micro-tissues with hexagonal hollow cross-sections indicate that cell information was successfully generated using a homemade 3D-imprinted device for layer-by-layer imprinting and assembling the hepatic cell sheets.By infiltrating vascular endothelial cells into the hollow section of the assembly,biomimetic hepatic microtissues with vascularized channels for nutrient diffusion and drug perfusion can be obtained.We demonstrate that the resultant vascularized biomimetic hepatic micro-tissues can not only be integrated into a microfluidic drug-screening liver-on-a-chip but also assembled into an enlarged physiological structure to promote liver regeneration.We believe that our 3D-imprinted cell sheets strategy will open new avenues for biomimetic microtissue construction.
基金Supported by the Natural Science Foundation of Jilin Province(No.201215180)the Science and Technology Developmental Plan of Jilin Province(No.20130206099SF)+1 种基金the Science and Technology Research Projects for Education Department of Jilin Province(No.201359)the National Natural Science Foundation of China(No.21302062)
文摘Recently, the investigation of novel molecularly imprinted polymers(MIPs) has attracted a lot of interest and becomes a fascinating field. The phenobarbital(PHN) was taken as an imprinted molecule and the 2-vinyl-4,6-diamino-1,3,5-triazine(VDAT) was considered as a functional monomer in this study. The geometry optimization, natural bond orbital(NBO) charge, and molecular electrostatic potential(MEP) of PHN and VDAT were studied at the M062 X level belonging to one of the hybrid density functional theories. Furthermore, we discussed the bonding conditions of PHN molecular imprinted polymers(PHN-MIPs) via the hydrogen bond length and atoms in molecules(AIM) theory. The rebinding property of PHN-MIPs was also researched. The results of MEP and NBO charge analysis were coincident. The stability property was excellent when the ratio of PHN and VDAT was 1:4. Except the classic hydrogen bonds, non-classical hydrogen bonds also existed in the imprinted polymers. By simulating the rebinding energies between the pentobarbital(PNT), barbital(BAR), and PHN-MIPs after the elution of PHN, the rebinding property of PHN-MIPs to PHN was excellent when PNT and BAR existed all at once. This research can provide theoretical reference for the synthesis and characterization of novel PHN-MIPs.
基金supported by the National Natural Science Foundation of China(No.20574038)the Natural Science Foundation of Tianjin(No.09JCYBJC02900).
文摘In this letter,N-acryloyl-3-aminophenylboronic acid(AAPBA) was synthesized and then examined as a new functional monomer for protein imprinting.It was allowed to be copolymerized with acrylamide to produce hemoglobin- or lysozyme-imprinted hydrogels.In template rebinding tests,the imprinted gels showed significant increase in the specific binding with the increase of the AAPBA amounts in the prepolymerization recipes.These results indicate that AAPBA may be a useful functional monomer for its moderate interactions with protein molecules.
基金Supported by the National High-Tech Research & Development Program of China (Grant No. 2007AA10Z432)the National Basic Research Program (Grant No. 2007CB914100)+1 种基金the National Natural Science Foundation of China (Grant Nos. 20675040 & 20875050)the Natural Science Foundation of Tianjin (Grant No. 07JCYBJC00500)
文摘In this research, a surface imprinting strategy has been adopted in protein imprinting. Bovine hemo-globin surface-imprinted polystyrene (PS) nanoparticles with magnetic susceptibility have been syn-thesized through multistage core-shell polymerization system using 3-aminophenylboronic acid (APBA) as functional and cross-linking monomers. Superparamagnetic molecularly imprinted polystyrene nanospheres with poly(APBA) thin films have been synthesized and used for the first time for protein molecular imprinting in an aqueous solution. The magnetic susceptibility is imparted through the successful encapsulation of Fe3O4 nanoparticles. The morphology, adsorption, and recognition prop-erties of superparamagnetic molecularly imprinted polymers (MIPs) have been investigated using transmission electron microscopy, X-ray diffraction, thermogravimetric analysis, and vibrating sample magnetometer. Rebinding experimental results show that poly(APBA) MIPs-coated superparamagnetic PS nanoparticles have high adsorption capacity for template protein bovine hemoglobin and compara-tively low nonspecific adsorption. The imprinted superparamagnetic nanoparticles could easily reach the adsorption equilibrium and achieve magnetic separation in an external magnetic field, thus avoid-ing some problems of the bulk polymer.