期刊文献+
共找到56篇文章
< 1 2 3 >
每页显示 20 50 100
基于块编码特点的压缩视频质量增强算法
1
作者 于海 杨磊 +4 位作者 高阳 刘枫琪 刘鹏宇 孙萱 张悦 《北京工业大学学报》 CAS CSCD 北大核心 2024年第9期1069-1076,共8页
针对现有压缩视频质量增强算法未能充分利用压缩视频特点的问题,研究了视频编码与压缩视频质量增强任务之间的本质关系,并针对性地设计了一种基于三维卷积神经网络(3D convolutional neural network, 3D-CNN)的非对齐压缩视频质量增强... 针对现有压缩视频质量增强算法未能充分利用压缩视频特点的问题,研究了视频编码与压缩视频质量增强任务之间的本质关系,并针对性地设计了一种基于三维卷积神经网络(3D convolutional neural network, 3D-CNN)的非对齐压缩视频质量增强算法。实验结果表明:相较于高效视频编码(high efficiency video coding, HEVC)标准H.265,所提算法在低延迟(low delay, LD)配置下且量化参数(quantization parameter, QP)为37时,峰值信噪比(peak signal-to-noise ratio, PSNR)提升了0.465 2 dB;相较于数据压缩会议(data compression conference, DCC)中提出的多帧引导的注意力网络(multi-frame guided attention network, MGANet)方法,该算法PSNR的增长量提升了15.1%。 展开更多
关键词 视频编码 高效视频编码(high efficiency video coding HEVC) 压缩视频质量增强 深度学习 卷积神经网络(convolutional neural network cnn) 三维卷积神经网络(3D convolutional neural network 3D-cnn)
下载PDF
一种基于3D-CNN的微表情识别算法 被引量:5
2
作者 吴进 闵育 +1 位作者 李聪 张伟华 《电讯技术》 北大核心 2019年第10期1115-1120,共6页
微表情是一种持续时间很短暂的面部表情。针对其识别率低的问题,提出了一种基于三维卷积神经网络(3D Convolutionnal Neural Network,3D-CNN)的微表情识别算法。使用Keras作为网络框架,在3D-VGG-Block(3Dimension Visual Geometry Group... 微表情是一种持续时间很短暂的面部表情。针对其识别率低的问题,提出了一种基于三维卷积神经网络(3D Convolutionnal Neural Network,3D-CNN)的微表情识别算法。使用Keras作为网络框架,在3D-VGG-Block(3Dimension Visual Geometry Group Block,3D-VGG-Block)的基础上加入批量归一化算法以及丢弃法,提升网络深度与训练速度的同时有效地防止过拟合;针对数据集稀少的问题,采取随机设置起始帧的位置,提前设定每次读取帧序列的长度,循环操作,在将所有数据均遍历的同时,达到数据增广的目的。该算法在CASME II数据集上的识别率最高达68.85%,在识别率上有一定优势。 展开更多
关键词 微表情识别 深度学习 三维卷积神经网络 批量归一化算法 丢弃法
下载PDF
基于深度学习的t-fMRI脑状态解码
3
作者 付佳俊 卢梅丽 +2 位作者 曹一凡 郭兆桦 高资成 《天津职业技术师范大学学报》 2022年第4期45-50,共6页
针对传统方法在解码大脑状态中由特征提取带来的可重复性差和耗时问题,采用基于3D卷积神经网络(3D-CNN)模型对任务态功能磁共振成像(t-fMRI)进行分类,从不同数据粒度分别采用梯度加权类激活映射(GradCAM)算法和导向梯度加权类激活映射(G... 针对传统方法在解码大脑状态中由特征提取带来的可重复性差和耗时问题,采用基于3D卷积神经网络(3D-CNN)模型对任务态功能磁共振成像(t-fMRI)进行分类,从不同数据粒度分别采用梯度加权类激活映射(GradCAM)算法和导向梯度加权类激活映射(Guided Grad-CAM)算法探索分类结果与大脑不同脑区的功能相关性。采用4种不同t-f MRI数据验证算法的有效性,结果显示:3D-CNN分类模型准确度达97.8%,特征可视化能够准确映射到分类结果对应的功能脑区,且可有效解码大脑任务状态。 展开更多
关键词 脑状态解码 3D卷积神经网络(3D-cnn) 功能磁共振成像 可视化 梯度加权类激活映射 导向梯度加权类激活映射
下载PDF
Faster R-CNN模型在车辆检测中的应用 被引量:63
4
作者 王林 张鹤鹤 《计算机应用》 CSCD 北大核心 2018年第3期666-670,共5页
针对传统机器学习方法在车辆检测应用中易受光照、目标尺度和图像质量等因素影响,效率低下且泛化能力较差的问题,提出一种基于改进的较快的基于区域卷积神经网络(R-CNN)模型的车辆检测方法。该方法以Faster R-CNN模型为基础,通过对输入... 针对传统机器学习方法在车辆检测应用中易受光照、目标尺度和图像质量等因素影响,效率低下且泛化能力较差的问题,提出一种基于改进的较快的基于区域卷积神经网络(R-CNN)模型的车辆检测方法。该方法以Faster R-CNN模型为基础,通过对输入图像进行卷积和池化等操作提取车辆特征,结合多尺度训练和难负样本挖掘策略降低复杂环境的影响,利用KITTI数据集对深度神经网络模型进行训练,并采集实际场景中的图像进行测试。仿真实验中,在保证检测时间的情况下,相对原Faster R-CNN算法检测精确度提高了约8%。实验结果表明,所提方法能够自动地提取车辆特征,解决了传统方法提取特征费时费力的问题,同时提高了车辆检测精确度,具有良好的泛化能力和适用范围。 展开更多
关键词 车辆检测 FASTER R-cnn模型 区域建议网络 难负样本挖掘 KITTI数据集
下载PDF
基于改进Faster R-CNN的铁路客车螺栓检测研究 被引量:12
5
作者 赵江平 徐恒 党悦悦 《中国安全科学学报》 CSCD 北大核心 2021年第7期82-89,共8页
为确保铁路客车运行安全,提出一种基于快速区域卷积神经网络(Faster R-CNN)目标检测的客车关键部件图像缺陷检测算法,针对算法在小尺度螺栓检测方面存在的问题提出2点改进,首先,结合深度残差网络和Inception网络两者优点替换原VGG16网络... 为确保铁路客车运行安全,提出一种基于快速区域卷积神经网络(Faster R-CNN)目标检测的客车关键部件图像缺陷检测算法,针对算法在小尺度螺栓检测方面存在的问题提出2点改进,首先,结合深度残差网络和Inception网络两者优点替换原VGG16网络,并增加上采样层,解决图像经过卷积网络特征信息流失严重的问题;其次,通过K-means++聚类算法优化区域建议网络(RPN)中锚点的尺寸和比例,提高生成建议区域的精确性,解决缺陷目标定位不准确的问题;最后,用创建的螺栓缺陷数据集进行对比验证。结果表明:改进后的算法检测准确率可达87.4%,相较原算法提高8.9%,且对于多目标缺陷与混淆目标,漏检率与误检率分别降低9.9%和11%。 展开更多
关键词 铁路客车 缺陷图像 目标检测 Faster R-cnn K-means++
下载PDF
基于改进Faster R-CNN的轮胎缺陷检测方法 被引量:10
6
作者 吴则举 焦翠娟 陈亮 《计算机应用》 CSCD 北大核心 2021年第7期1939-1946,共8页
轮胎生产过程中出现的胎侧异物、胎冠异物、气泡、胎冠开根以及胎侧开根等缺陷会影响轮胎出厂后的使用,所以出厂使用前需要对每条轮胎进行无损检测。为了实现在工业中对于轮胎缺陷进行自动检测,提出了一种基于改进Faster R-CNN的轮胎缺... 轮胎生产过程中出现的胎侧异物、胎冠异物、气泡、胎冠开根以及胎侧开根等缺陷会影响轮胎出厂后的使用,所以出厂使用前需要对每条轮胎进行无损检测。为了实现在工业中对于轮胎缺陷进行自动检测,提出了一种基于改进Faster R-CNN的轮胎缺陷自动检测方法。首先,在预处理阶段,用直方图均衡化方法对轮胎图象的灰度进行拉伸,提高数据集的对比度,使图像目标和背景的灰度值产生明显差异;其次,为提高轮胎缺陷位置检测和识别的准确率,对Faster R-CNN结构进行改进,即把ZF卷积神经网络中第三层的卷积特征和第五层的卷积特征结合后输出,并将其作为区域建议网络层的输入;然后,在RoI pooling层之后引入在线难例挖掘(OHEM)算法,使轮胎缺陷检测的准确率得到进一步的提高。实验结果表明,改进后的Faster R-CNN的轮胎缺陷检测方法可以准确地分类和定位轮胎X射线图像缺陷,平均测试准确率可以达到95.7%。此外,还可以通过对网络进行微调来获得新的检测模型以检测其他类型的缺陷。 展开更多
关键词 Faster R-cnn 轮胎缺陷检测 ZF卷积神经网络 在线难例挖掘
下载PDF
基于膨胀卷积的多尺度焊缝缺陷检测算法 被引量:8
7
作者 谷静 吴怡宁 孟鑫昊 《光电子.激光》 CAS CSCD 北大核心 2022年第1期61-66,共6页
本文针对焊缝缺陷尺度变化不一导致的检测率效果不理想,提出了一种基于更快地区域卷积神经网络(faster region-based convolutional neural network, Faster R-CNN)对焊缝缺陷检测的改进算法。算法利用膨胀卷积在不同扩张率下进行特征融... 本文针对焊缝缺陷尺度变化不一导致的检测率效果不理想,提出了一种基于更快地区域卷积神经网络(faster region-based convolutional neural network, Faster R-CNN)对焊缝缺陷检测的改进算法。算法利用膨胀卷积在不同扩张率下进行特征融合,结合不同感受野下的卷积核更全面地提取不同尺度的特征信息,来提升目标的检测精度。同时利用深度可分离卷积,来对模型进行压缩,提高检测速度。实验表明,改进后的网络在保证运行速度的同时,能够提高检测速度,检测精度可以达到72%。 展开更多
关键词 焊缝缺陷检测 更快地区域卷积神经网络(faster region-based convolutional neural network Faster R-cnn) 特征融合 膨胀卷积
原文传递
基于卷积神经网络的领域适配模型的多工况迁移的轴承故障诊断 被引量:7
8
作者 钱思宇 秦东晨 +1 位作者 陈江义 袁峰 《振动与冲击》 EI CSCD 北大核心 2022年第24期192-200,共9页
针对故障滚动轴承在单一工况数据下训练的深度学习模型无法在复杂工况下无法实现有效的故障诊断,提出一种基于卷积神经网络的领域适配(convolutional neural network-domain adaptation,CNN-DA)模型。卷积网络用于对故障振动信号进行高... 针对故障滚动轴承在单一工况数据下训练的深度学习模型无法在复杂工况下无法实现有效的故障诊断,提出一种基于卷积神经网络的领域适配(convolutional neural network-domain adaptation,CNN-DA)模型。卷积网络用于对故障振动信号进行高层特征提取,网络首尾加入通道注意力机制(channel attention mechanism,CAM),以动态分配特征通道的权重,减小无效信息的干扰。结合领域自适应方法,将特征提取层获取到的高层故障特征进行源、目标域领域适配,领域适配模块整合了全域适配和类别域适配,以使两个领域中相同故障标签的特征的数据分布逐渐趋于重合,最后将深度学习模型应用于多种不同工况迁移的场合进行训练,得到训练结果和测试结果。通过不同来源数据集的试验,在多种工况迁移下测试模型,结果表明提出的模型能够应对复杂工况变化下的滚动轴承故障检测。 展开更多
关键词 故障诊断 深度学习 卷枳神经网络的领域适配(cnn-DA) 领域自适应
下载PDF
基于一维卷积神经网络的配电网高阻接地故障识别 被引量:7
9
作者 刘炳南 黄沂平 方国标 《电器与能效管理技术》 2020年第9期99-103,共5页
配电网直接与用户连接,其稳定性与整个电力系统对用户侧输送电能的能力息息相关。配电网运行环境复杂、覆盖广泛,若运行线路掉落接触到树木、草地时易发生高阻接地故障。此时,故障点阻抗达到几百欧甚至几千欧,电压、电流幅值变化微弱,... 配电网直接与用户连接,其稳定性与整个电力系统对用户侧输送电能的能力息息相关。配电网运行环境复杂、覆盖广泛,若运行线路掉落接触到树木、草地时易发生高阻接地故障。此时,故障点阻抗达到几百欧甚至几千欧,电压、电流幅值变化微弱,故障难以被检测到。如果故障无法及时排除,故障点间歇性电弧将造成不可估量的破坏。利用希尔伯特-黄变换(HHT)带通滤波进行特征量提取,构造时频能量矩阵,采用一维卷积神经网络(1D-CNN)构造分类器进行故障分类。通过仿真模型进行验证和适应性分析,结果表明算法准确率高且适应性良好。 展开更多
关键词 配电网 高阻接地故障 一维卷积神经网络(1D-cnn) 故障分类
下载PDF
基于深度卷积神经网络的舰载机目标检测 被引量:7
10
作者 朱兴动 田少兵 +3 位作者 黄葵 范加利 王正 陈化成 《计算机应用》 CSCD 北大核心 2020年第5期1529-1533,共5页
针对航母甲板面舰载机密集易遮挡,舰载机目标难以检测,且检测效果易受光照条件和目标尺度影响的问题,提出了一种改进的更快的区域卷积神经网络(Faster R-CNN)舰载机目标检测方法。该方法设计了带排斥损失策略的损失函数,并结合多尺度训... 针对航母甲板面舰载机密集易遮挡,舰载机目标难以检测,且检测效果易受光照条件和目标尺度影响的问题,提出了一种改进的更快的区域卷积神经网络(Faster R-CNN)舰载机目标检测方法。该方法设计了带排斥损失策略的损失函数,并结合多尺度训练,利用实验室条件下采集的图片对深度卷积神经网络进行训练并测试。测试实验显示,相对于原始Faster R-CNN检测模型,改进后的模型对遮挡舰载机目标具有良好的检测效果,召回率提高了7个百分点,精确率提高了6个百分点。实验结果表明,所提的改进方法能够自动全面地提取舰载机目标特征,解决了遮挡舰载机目标的检测问题,检测精度和速度均能够满足实际需要,且在不同的光照条件和目标尺度下适应性强,鲁棒性较高。 展开更多
关键词 舰载机目标检测 排斥损失策略 更快的区域卷积神经网络 多尺度训练
下载PDF
基于一维多尺度神经网络和库普曼池化的滚动轴承故障诊断方法
11
作者 孙祯 周素霞 《科学技术与工程》 北大核心 2024年第24期10297-10304,共8页
滚动轴承作为机械运转的核心部件,其发生故障会导致旋转机械运行状态的恶化。卷积网络作为滚动轴承故障诊断的一种方法,针对其固定窗口局限性,结合一维卷积神经网络(1D convolutional neural network, 1D-CNN)在处理一维数据的优势,利... 滚动轴承作为机械运转的核心部件,其发生故障会导致旋转机械运行状态的恶化。卷积网络作为滚动轴承故障诊断的一种方法,针对其固定窗口局限性,结合一维卷积神经网络(1D convolutional neural network, 1D-CNN)在处理一维数据的优势,利用多尺度思想在同一层同时使用不同大小的窗口提取信号特征,根据时间维度信息对异常检测方法的影响,将1D-CNN的池化层与Koopman模型结合,得到高阶动态特征;最后将所得到的故障特征输入全连接层中进行故障诊断。为验证模型优势,对所提出的初始模型和两种改进模型在相同工况下进行对比,同时与支持向量机(support vector machine, SVM)和BP神经网络(back propagation neural network, BPNN)等算法进行对比分析。结果表明:所提模型的识别效果较好,滚动轴承故障准确率可以达到99.99%。 展开更多
关键词 滚动轴承 故障诊断 一维多尺度卷积网络(1D-cnn) Koopman池化
下载PDF
基于底质分类的浅海海域遥感水深反演
12
作者 王江杰 王星河 《北京测绘》 2024年第8期1172-1178,共7页
近年来,卫星遥感影像水深反演一直是国内外研究热点,以往的遥感影像水深反演模型多基于底质均一的条件,缺乏对混合海底底质的研究。针对此问题,本文提出基于底质分类视角的遥感影像水深反演模型。以中国海南岛周边的蜈支洲岛与附近卫星... 近年来,卫星遥感影像水深反演一直是国内外研究热点,以往的遥感影像水深反演模型多基于底质均一的条件,缺乏对混合海底底质的研究。针对此问题,本文提出基于底质分类视角的遥感影像水深反演模型。以中国海南岛周边的蜈支洲岛与附近卫星影像为试验数据,对其进行预处理与底质分类后,分别使用双向长短期记忆网络(Bi-LSTM)模型、Stumpf模型与一维卷积神经网络(1D-CNN)模型进行水深反演,分析底质分类前后水深反演结果与不同模型的水深反演结果。结果表明,不同模型在底质分类后水深反演精度均高于底质分类前水深反演精度。Bi-LSTM模型的水深反演精度最高,底质分类后遥感影像水深反演的平均绝对误差、均方根误差与决定系数分别为0.333 m、0.474 m、0.814 m,均优于对比模型。 展开更多
关键词 遥感影像 水深反演 海底底质分类 双向长短期记忆网络(Bi-LSTM) Stumpf模型 1D-cnn模型
下载PDF
基于改进Mask R-CNN的输电线路安全检测方法研究
13
作者 王铭晟 《通信电源技术》 2024年第17期219-221,共3页
随着全球电力需求的持续增长和电力网络的不断扩展,输电线路的安全性与稳定性尤为重要。输电线路在连接发电厂和用户的过程中,承担着可靠输送电能的重要职责。为提升输电线路的安全,研究提出一种基于掩膜区域卷积神经网络(Mask Region C... 随着全球电力需求的持续增长和电力网络的不断扩展,输电线路的安全性与稳定性尤为重要。输电线路在连接发电厂和用户的过程中,承担着可靠输送电能的重要职责。为提升输电线路的安全,研究提出一种基于掩膜区域卷积神经网络(Mask Region Convolutional Neural Network,Mask R-CNN)的输电线路安全检测模型,并引入特征金字塔网络(Feature Pyramid Network,FPN)对其进行改进。实验结果表明,在数据集尺寸为500时,改进Mask R-CNN模型的准确率为0.91,损失函数值为0.01。改进的Mask R-CNN模型能够有效提升输电线路缺陷检测的精度,具有较高的实用价值,能够提高电力系统的安全监控水平。 展开更多
关键词 输电线路 安全检测 掩膜区域卷积神经网络(Mask R-cnn) 特征金字塔网络(FPN)
下载PDF
改进Faster R-CNN模型的CT图磨玻璃密度影目标检测 被引量:5
14
作者 杨淑莹 邓东升 郑清春 《中国图象图形学报》 CSCD 北大核心 2021年第9期2171-2180,共10页
目的针对Faster R-CNN(faster region convolutional neural network)模型在肺部计算机断层扫描(computed tomography,CT)图磨玻璃密度影目标检测中小尺寸目标无法有效检测与模型检测速度慢等问题,对Faster R-CNN模型特征提取网络与区... 目的针对Faster R-CNN(faster region convolutional neural network)模型在肺部计算机断层扫描(computed tomography,CT)图磨玻璃密度影目标检测中小尺寸目标无法有效检测与模型检测速度慢等问题,对Faster R-CNN模型特征提取网络与区域候选网络(region proposal network,RPN)提出了改进方法。方法使用特征金字塔网络替换Faster R-CNN的特征提取网络,生成特征金字塔;使用基于位置映射的RPN产生锚框,并计算每个锚框的中心到真实物体中心的远近程度(用参数"中心度"表示),对RPN判定为前景的锚框进一步修正位置作为候选区域(region proposal),并将RPN预测的前景/背景分类置信度与中心度结合作为候选区域的排序依据,候选区域经过非极大抑制筛选出感兴趣区域(region of interest,RoI)。将Ro I对应的特征区域送入分类回归网络得到检测结果。结果实验结果表明,在新冠肺炎患者肺部CT图数据集上,本文改进的模型相比于Faster R-CNN模型,召回率(recall)增加了7%,平均精度均值(mean average precision,mAP)增加了3.9%,传输率(frames per second,FPS)由5帧/s提升至9帧/s。特征金字塔网络的引入明显提升了模型的召回率与m AP指标,基于位置映射的RPN显著提升了模型的检测速度。与其他最新改进的目标检测模型相比,本文改进的模型保持了双阶段目标检测模型的高精度,并拉近了与单阶段目标检测模型在检测速度指标上的距离。结论本文改进的模型能够有效检测到患者肺部CT图的磨玻璃密度影目标区域,对小尺寸目标同样适用,可以快速有效地为医生提供辅助诊断。 展开更多
关键词 新型冠状病毒肺炎(COVID-19) 磨玻璃密度影 Faster R-cnn 特征金字塔网络(FPN) 区域候选网络(RPN) 残差神经网络(ResNet)
原文传递
基于改进YOLOv8的风电叶片表面损伤检测与识别方法
15
作者 吴博阳 毛胜轲 +3 位作者 林特宇 任浩杰 蔡海洋 李扬 《机电工程》 CAS 北大核心 2024年第7期1260-1268,共9页
针对风电叶片极易出现损伤和故障,且制造和维护成本高昂等问题,提出了一种基于改进YOLOv8模型的风电叶片表面损伤检测与识别方法。首先,将现场拍摄到的高清叶片图像作为实验数据集,并将其按比例随机划分为训练集、验证集和测试集;然后,... 针对风电叶片极易出现损伤和故障,且制造和维护成本高昂等问题,提出了一种基于改进YOLOv8模型的风电叶片表面损伤检测与识别方法。首先,将现场拍摄到的高清叶片图像作为实验数据集,并将其按比例随机划分为训练集、验证集和测试集;然后,在YOLOv8模型中引入了动态数据增强算法Mosaic、Mixup及离线数据增强算法Albumentations,对训练数据集进行了扩充,解决了模型在有限数据集下的泛化性问题;最后,使用卷积注意力模块(CBAM)和梯度协调机制(GHM)/Focal loss算法等手段加强了模型的损伤检测能力,改进了样本分布不均衡问题,建立了一种先进的风电叶片表面损伤检测与识别方法,提升了YOLOv8模型对叶片损伤的检测精度。研究结果表明:改进后的YOLOv8模型在计算量和参数量都较低的情况下,其平均精度(AP)、平均召回率(AR)都超越了同等配置下的快速区域卷积神经网络(Faster R-CNN)模型。改进后的YOLOv8模型在交并比(IoU)阈值为0.5时的AP和AR分别达到了73.2%和58.8%,验证了该方法在风电叶片损伤检测方面具有一定的可靠性和有效性。 展开更多
关键词 风电叶片损伤识别 YOLOv8 目标检测 数据增强算法 卷积注意力模块 梯度协调机制 平均精度 平均召回率 快速区域卷积神经网络 交并比
下载PDF
复杂背景下基于改进Mask R-CNN的路面裂缝检测算法
16
作者 张晓华 李小龙 +1 位作者 艾金泉 舒兆翰 《北京测绘》 2024年第3期431-436,共6页
裂缝检测对路面养护具有重要意义,深度学习在该领域取得一定成效。然而,在实际应用中,图像中的噪声纹理背景、复杂的裂缝拓扑结构和图像采集设备给裂缝检测带来了一定的挑战。为了提升在复杂场景下的路面裂缝检测精度,提出了一种改进掩... 裂缝检测对路面养护具有重要意义,深度学习在该领域取得一定成效。然而,在实际应用中,图像中的噪声纹理背景、复杂的裂缝拓扑结构和图像采集设备给裂缝检测带来了一定的挑战。为了提升在复杂场景下的路面裂缝检测精度,提出了一种改进掩码区域卷积神经网络(Mask R-CNN)模型的实例分割算法。使用ConvNeXt-T替代Mask R-CNN的ResNet50框架作为特征生成网络,在自下而上捕获长期依赖的同时保持裂缝特征多样性;设计高维特征提取模块(HFEM)获取高级语义信息,消除背景噪声;引入感受野模块(RFB),扩大感受野,增强多尺度特征信息交互能力。在多结构裂缝图像(MSCI)数据集上进行对比实验,结果表明,提出的改进方法能显著提升Mask R-CNN模型的分割精度,优于经典的Cascade Mask RCNN,最佳模型F1得分84.15%,相较原算法提高了6.29%。在DeepCrack数据集上进行泛化性实验,表现优异。 展开更多
关键词 路面裂缝检测 复杂场景 掩码区域卷积神经网络(Mask R-cnn) 实例分割
下载PDF
基于信息融合与一维卷积神经网络的光伏电站传感器健康状态评估方法
17
作者 杨芳僚 黄鑫 +3 位作者 谭鸿志 闵琦 祝视 燕磊 《湖南电力》 2024年第3期105-113,共9页
针对现有传感器故障诊断方法中对专家知识的依赖、忽视旁路终端时空关联性、冗余特征影响等问题,提出一种基于信息融合与一维卷积神经网络的传感器健康状态评估方法。针对与光伏发电预测强相关的光照传感器和温度传感器,从传感器数据流... 针对现有传感器故障诊断方法中对专家知识的依赖、忽视旁路终端时空关联性、冗余特征影响等问题,提出一种基于信息融合与一维卷积神经网络的传感器健康状态评估方法。针对与光伏发电预测强相关的光照传感器和温度传感器,从传感器数据流统计特征、传感器数据流时序特征、旁路终端数据特征、天气预报数据特征等4个维度进行特征提取,并利用随机森林算法筛选传感器核心特征,最后针对以上两类传感器分别训练健康状态评估模型。实验结果表明,所提方法在温度传感器和光照传感器的健康状态评估中准确率分别达到了99.29%和99.07%。 展开更多
关键词 健康状态评估 传感器 信息融合 一维卷积神经网络 特征提取 特征筛选
下载PDF
基于更快区域卷积神经网络的多视角船舶识别 被引量:2
18
作者 程静 王荣杰 +2 位作者 曾光淼 林安辉 王亦春 《哈尔滨工程大学学报》 EI CAS CSCD 北大核心 2023年第10期1832-1840,共9页
针对在复杂海洋环境下采集船舶多视角图像难度大、不同视角下船舶外观差异显著的问题,本文以自制的不同类型的多艘船舶的多视角图像为数据集训练更快区域卷积神经网络模型,利用平均F1分数、平均精度和平均误检率作为评价指标评估更快区... 针对在复杂海洋环境下采集船舶多视角图像难度大、不同视角下船舶外观差异显著的问题,本文以自制的不同类型的多艘船舶的多视角图像为数据集训练更快区域卷积神经网络模型,利用平均F1分数、平均精度和平均误检率作为评价指标评估更快区域卷积神经网络模型对不同视角船舶的识别性能,并通过识别不同船舶的F1分数和误检率分析更快区域卷积神经网络对不同质量、背景图像的识别能力。实验结果表明,更快区域卷积神经网络识别多角度船舶的平均F1分数为0.6969,平均精度为92.88%,平均误检率为8.34%,即更快区域卷积神经网络对多视角船舶有较高的识别能力,但对于有雾或昏暗环境下的低像素图像识别能力明显下降。 展开更多
关键词 多视角 船舶识别 视觉图像 更快区域卷积神经网络 目标检测 特征提取 深度学习 低分辨率图像
下载PDF
刮板机异常监测系统设计
19
作者 齐健 包国强 +6 位作者 尉维洁 刘峰 高磊 陈廷官 冯化一 吴昊 冯俊 《自动化仪表》 CAS 2024年第8期58-63,共6页
为了实时识别刮板机上的异常小目标,确保刮板机的正常、安全运行,设计了基于机器视觉的刮板机异常监测系统。数据采集层的工业摄像机采集单元基于机器视觉原理获取刮板机实时监测图像,经通用串行总线(USB)接口传输图像给数据处理层。对... 为了实时识别刮板机上的异常小目标,确保刮板机的正常、安全运行,设计了基于机器视觉的刮板机异常监测系统。数据采集层的工业摄像机采集单元基于机器视觉原理获取刮板机实时监测图像,经通用串行总线(USB)接口传输图像给数据处理层。对采集的刮板机图像作降噪、增强处理后,通过数据传输层的基于现场可编程门阵列(FPGA)的以太网通信模块完成图像的上传。数据监测层的异常状态监测模块依据接收到的图像,创新性地调用改进的掩蔽区域卷积神经网络(Mask R-CNN)模型,由异常报警模块发送报警信息,并通过数据显示层呈现异常监测结果及报警提示信息,以实现刮板机异常监测。试验结果表明:该系统处理后的刮板机图像峰值信噪比显著提升、均方根误差显著降低;增强后的刮板机图像异常识别损失更低。该系统可识别刮板机不同类型的异常,并标记异常目标。 展开更多
关键词 机器视觉 刮板机 异常监测 图像异常 现场可编程门阵列 掩蔽区域卷积神经网络模型
下载PDF
基于双路射频指纹卷积神经网络与特征融合的雷达辐射源个体识别
20
作者 肖易寒 王博煜 +1 位作者 于祥祯 蒋伊琳 《电子与信息学报》 EI CAS CSCD 北大核心 2024年第8期3238-3245,共8页
为实现雷达辐射源个体识别不受信号参数、调制方式的影响,该文提出基于双路射频指纹卷积神经网络(Dual RFF-CNN2)和特征融合的雷达辐射源个体识别方法。首先从接收的射频信号中提取原始I/Q(Raw-I/Q)信号;其次分别对Raw-I/Q两路信号进行... 为实现雷达辐射源个体识别不受信号参数、调制方式的影响,该文提出基于双路射频指纹卷积神经网络(Dual RFF-CNN2)和特征融合的雷达辐射源个体识别方法。首先从接收的射频信号中提取原始I/Q(Raw-I/Q)信号;其次分别对Raw-I/Q两路信号进行轴向积分双谱(AIB)和围线积分双谱(SIB)降维以构建双谱积分矩阵;最后将Raw-I/Q信号及双谱积分矩阵共同送入Dual RFF-CNN2网络并进行特征融合以实现雷达辐射源个体识别。实验结果表明,该方法具有较高的识别准确率,提取的“指纹特征”具备稳定性、鲁棒性。 展开更多
关键词 雷达辐射源个体识别 双路射频指纹卷积神经网络 特征融合 指纹特征 原始I/Q信号
下载PDF
上一页 1 2 3 下一页 到第
使用帮助 返回顶部