In this paper, the problem of axisymmetric buckling and postbuckling of a circular thin-film delamination bridged by through-thickness fiber tows in 3D composites is presented. An iterative procedure based on Taylor...In this paper, the problem of axisymmetric buckling and postbuckling of a circular thin-film delamination bridged by through-thickness fiber tows in 3D composites is presented. An iterative procedure based on Taylor's series expansion is used to generate a family of nondimensionalized postbuckling solutions of the above problem by von Karman's nonlinear plate theory. Attention is focused, herein, on the effects of the bridge force of through-thickness fibers on the buckling and postbuckling behavior of the delamination. It is found that fiber bridge not only increases the ability of resisting delamination buckling and postbuckling, but also brings on the jump of the delamination deflection mode during the postbuckling phase. Consequently the behavior of the composite structure with delamination is greatly improved, such as increasing the residual strength and prolonging the service life.展开更多
The fatigue behavior and damage mechanisms of 2 D and 3 D carbon/epoxy composites with approximately the same 51% fiber volume fraction were investigated. A test program was conducted on fatigue residual strength an...The fatigue behavior and damage mechanisms of 2 D and 3 D carbon/epoxy composites with approximately the same 51% fiber volume fraction were investigated. A test program was conducted on fatigue residual strength and fatigue life under constant amplitude tensile fatigue loading. Equations of predicting the fatigue life for both 2 D and 3 D composites were provided. Comparison of the 2 D and 3 D composites indicated that due to the through thickness reinforcement, the 3 D composite has considerably better fatigue performance. Comparison of experimental data with calculation results shows good agreement, thus confirming the usefulness of the predictions.展开更多
电磁波在无线通信等领域的广泛应用导致了严重的电磁污染,迫切需要研发高性能电磁波吸收材料.本文针对吸波材料阻抗不匹配等关键问题,设计并成功制备了新型核壳LaOCl/LaFeO_(3)纳米纤维电磁波吸收剂.这种独特的一维多级结构由导电LaFeO_...电磁波在无线通信等领域的广泛应用导致了严重的电磁污染,迫切需要研发高性能电磁波吸收材料.本文针对吸波材料阻抗不匹配等关键问题,设计并成功制备了新型核壳LaOCl/LaFeO_(3)纳米纤维电磁波吸收剂.这种独特的一维多级结构由导电LaFeO_(3)磁性壳层和离子化合物LaOCl核层组成.基于介电-磁损耗耦合和阻抗匹配的协同作用,LaOCl/LaFeO_(3)纳米纤维在超低负载条件下(4 w t%),表现出-40.1 d B(2.0 mm)的反射损耗和6.4 GHz(2.4 mm)的有效吸收带宽.该工作提出了一种新型LaOCl/LaFeO_(3)纳米纤维吸波材料,并为阻抗匹配调控和电磁吸波性能优化开辟了新策略.展开更多
A detailed computational investigation,based on density functional theory,of the interaction of polyani-line(PANI)and graphene nanoribbons(GNRs)with SrTiO_(3) is presented.The adsorption of PANI in var-ious oxidation ...A detailed computational investigation,based on density functional theory,of the interaction of polyani-line(PANI)and graphene nanoribbons(GNRs)with SrTiO_(3) is presented.The adsorption of PANI in var-ious oxidation states and co-adsorption with GNRs is found to be thermodynamically favourable.Ad-sorbed PANI introduces N and C 2p states into the SrTiO_(3) bandgap,while co-adsorption of PANI and GNRs leads to a bridging of the gap and semi-metallic behaviour,thus rendering the electrical properties highly sensitive to the loading of the GNRs/PANI in the composites.Modelling the lattice dynamics of the composites predicts a 68-88%reduction in the lattice thermal conductivity due to reduced phonon group velocities.Taken together,these findings provide insight into the growing number of experimental studies highlighting the enhanced thermoelectric performance of oxide-polymer composites and indicate co-adsorption with graphene as a facile direction for future research.展开更多
基金The project supported by post doctoral science foundation of China
文摘In this paper, the problem of axisymmetric buckling and postbuckling of a circular thin-film delamination bridged by through-thickness fiber tows in 3D composites is presented. An iterative procedure based on Taylor's series expansion is used to generate a family of nondimensionalized postbuckling solutions of the above problem by von Karman's nonlinear plate theory. Attention is focused, herein, on the effects of the bridge force of through-thickness fibers on the buckling and postbuckling behavior of the delamination. It is found that fiber bridge not only increases the ability of resisting delamination buckling and postbuckling, but also brings on the jump of the delamination deflection mode during the postbuckling phase. Consequently the behavior of the composite structure with delamination is greatly improved, such as increasing the residual strength and prolonging the service life.
文摘The fatigue behavior and damage mechanisms of 2 D and 3 D carbon/epoxy composites with approximately the same 51% fiber volume fraction were investigated. A test program was conducted on fatigue residual strength and fatigue life under constant amplitude tensile fatigue loading. Equations of predicting the fatigue life for both 2 D and 3 D composites were provided. Comparison of the 2 D and 3 D composites indicated that due to the through thickness reinforcement, the 3 D composite has considerably better fatigue performance. Comparison of experimental data with calculation results shows good agreement, thus confirming the usefulness of the predictions.
基金financially supported by the National Natural Science Foundation of China(52102068,52073156,and 52202058)the State Key Laboratory of New Ceramic and Fine Processing,Tsinghua University(KF202112)+5 种基金the Science and Technology on Advanced Functional Composite Laboratory(6142906200509)the Natural Science Foundation of Jiangsu Province(20KJB430017)NUPTSF(NY219162)the Key Science and Technology Program of Henan Province(212102210591)the Foundation for University Youth Key Teachers of Henan Province(2020GGJS170)the Support Program for Scientific and Technological Innovation Talents of Higher Education in Henan Province(21HASTIT004)。
文摘电磁波在无线通信等领域的广泛应用导致了严重的电磁污染,迫切需要研发高性能电磁波吸收材料.本文针对吸波材料阻抗不匹配等关键问题,设计并成功制备了新型核壳LaOCl/LaFeO_(3)纳米纤维电磁波吸收剂.这种独特的一维多级结构由导电LaFeO_(3)磁性壳层和离子化合物LaOCl核层组成.基于介电-磁损耗耦合和阻抗匹配的协同作用,LaOCl/LaFeO_(3)纳米纤维在超低负载条件下(4 w t%),表现出-40.1 d B(2.0 mm)的反射损耗和6.4 GHz(2.4 mm)的有效吸收带宽.该工作提出了一种新型LaOCl/LaFeO_(3)纳米纤维吸波材料,并为阻抗匹配调控和电磁吸波性能优化开辟了新策略.
基金NDW thanks the EPSRC DTP competition 2018-19 at the University of Huddersfield for funding(EP/R513234/1)JMS is currently supported by a UKRI Future Leaders Fellowship(MR/T043121/1)+2 种基金previously held a University of Manchester Presidential Fellowship.Calculations were performed on the Orion computing fa-cility and the Violeta HPC at the University of Huddersfield,and the THOMAS and YOUNG facilities at the UK Materials and Molecular Modelling Hub(MMM Hub)which is partially funded by the EPSRC(EP/P020194/1 and EP/T022213/1)via our membership of the UK’s HEC Materials Chemistry Consortium(MCC),which is also funded by the EPSRC(EP/R029431/1 and EP/X035859/1).
文摘A detailed computational investigation,based on density functional theory,of the interaction of polyani-line(PANI)and graphene nanoribbons(GNRs)with SrTiO_(3) is presented.The adsorption of PANI in var-ious oxidation states and co-adsorption with GNRs is found to be thermodynamically favourable.Ad-sorbed PANI introduces N and C 2p states into the SrTiO_(3) bandgap,while co-adsorption of PANI and GNRs leads to a bridging of the gap and semi-metallic behaviour,thus rendering the electrical properties highly sensitive to the loading of the GNRs/PANI in the composites.Modelling the lattice dynamics of the composites predicts a 68-88%reduction in the lattice thermal conductivity due to reduced phonon group velocities.Taken together,these findings provide insight into the growing number of experimental studies highlighting the enhanced thermoelectric performance of oxide-polymer composites and indicate co-adsorption with graphene as a facile direction for future research.