This paper discusses the order-preserving convergence for spectral approximation of the self-adjoint completely continuous operator T.Under the condition that the approximate operator Th converges to T in norm,it is p...This paper discusses the order-preserving convergence for spectral approximation of the self-adjoint completely continuous operator T.Under the condition that the approximate operator Th converges to T in norm,it is proven that the k-th eigenvalue of Th converges to the k-th eigenvalue of T.(We sorted the positive eigenvalues in decreasing order and negative eigenvalues in increasing order.) Then we apply this result to conforming elements,nonconforming elements and mixed elements of self-adjoint elliptic differential operators eigenvalue problems,and prove that the k-th approximate eigenvalue obtained by these methods converges to the k-th exact eigenvalue.展开更多
Let D be a bounded domain in an n-dimensional Euclidean space ? n . Assume that $$0 < \lambda _1 \leqslant \lambda _2 \leqslant \cdots \leqslant \lambda _k \leqslant \cdots $$ are the eigenvalues of the Dirichlet L...Let D be a bounded domain in an n-dimensional Euclidean space ? n . Assume that $$0 < \lambda _1 \leqslant \lambda _2 \leqslant \cdots \leqslant \lambda _k \leqslant \cdots $$ are the eigenvalues of the Dirichlet Laplacian operator with any order l: $$\left\{ \begin{gathered} ( - \vartriangle )^l u = \lambda u, in D \hfill \\ u = \frac{{\partial u}}{{\partial \vec n}} = \cdots = \frac{{\partial ^{l - 1} u}}{{\partial \vec n^{l - 1} }} = 0, on \partial D \hfill \\ \end{gathered} \right.$$ . Then we obtain an upper bound of the (k+1)-th eigenvalue λ k+1 in terms of the first k eigenvalues. $$\sum\limits_{i = 1}^k {(\lambda _{(k + 1)} - \lambda _i )} \leqslant \frac{1}{n}[4l(n + 2l - 2)]^{\tfrac{1}{2}} \left\{ {\sum\limits_{i = 1}^k {(\lambda _{(k + 1)} - \lambda _i )^{\tfrac{1}{2}} \lambda _i^{\tfrac{{l - 1}}{l}} \sum\limits_{i = 1}^k {(\lambda _{(k + 1)} - \lambda _i )^{\tfrac{1}{2}} \lambda _i^{\tfrac{1}{l}} } } } \right\}^{\tfrac{1}{2}} $$ . This ineguality is independent of the domain D. Furthermore, for any l ? 3 the above inequality is better than all the known results. Our rusults are the natural generalization of inequalities corresponding to the case l = 2 considered by Qing-Ming Cheng and Hong-Cang Yang. When l = 1, our inequalities imply a weaker form of Yang inequalities. We aslo reprove an implication claimed by Cheng and Yang.展开更多
基金supported by the National Natural Science Foundation of China (Grant No. 10761003)Guizhou Province Scientific Research for Senior Personnels
文摘This paper discusses the order-preserving convergence for spectral approximation of the self-adjoint completely continuous operator T.Under the condition that the approximate operator Th converges to T in norm,it is proven that the k-th eigenvalue of Th converges to the k-th eigenvalue of T.(We sorted the positive eigenvalues in decreasing order and negative eigenvalues in increasing order.) Then we apply this result to conforming elements,nonconforming elements and mixed elements of self-adjoint elliptic differential operators eigenvalue problems,and prove that the k-th approximate eigenvalue obtained by these methods converges to the k-th exact eigenvalue.
基金the National Natural Science Foundation of China(Grant No.10571088)
文摘Let D be a bounded domain in an n-dimensional Euclidean space ? n . Assume that $$0 < \lambda _1 \leqslant \lambda _2 \leqslant \cdots \leqslant \lambda _k \leqslant \cdots $$ are the eigenvalues of the Dirichlet Laplacian operator with any order l: $$\left\{ \begin{gathered} ( - \vartriangle )^l u = \lambda u, in D \hfill \\ u = \frac{{\partial u}}{{\partial \vec n}} = \cdots = \frac{{\partial ^{l - 1} u}}{{\partial \vec n^{l - 1} }} = 0, on \partial D \hfill \\ \end{gathered} \right.$$ . Then we obtain an upper bound of the (k+1)-th eigenvalue λ k+1 in terms of the first k eigenvalues. $$\sum\limits_{i = 1}^k {(\lambda _{(k + 1)} - \lambda _i )} \leqslant \frac{1}{n}[4l(n + 2l - 2)]^{\tfrac{1}{2}} \left\{ {\sum\limits_{i = 1}^k {(\lambda _{(k + 1)} - \lambda _i )^{\tfrac{1}{2}} \lambda _i^{\tfrac{{l - 1}}{l}} \sum\limits_{i = 1}^k {(\lambda _{(k + 1)} - \lambda _i )^{\tfrac{1}{2}} \lambda _i^{\tfrac{1}{l}} } } } \right\}^{\tfrac{1}{2}} $$ . This ineguality is independent of the domain D. Furthermore, for any l ? 3 the above inequality is better than all the known results. Our rusults are the natural generalization of inequalities corresponding to the case l = 2 considered by Qing-Ming Cheng and Hong-Cang Yang. When l = 1, our inequalities imply a weaker form of Yang inequalities. We aslo reprove an implication claimed by Cheng and Yang.