In this article, we first present an equivalent formulation of the free boundary problem to 3-D incompressible Euler equations, then we announce our local wellposedness result concerning the free boundary problem in S...In this article, we first present an equivalent formulation of the free boundary problem to 3-D incompressible Euler equations, then we announce our local wellposedness result concerning the free boundary problem in Sobolev space provided that there is no self-intersection point on the initial surface and under the stability assumption that $\frac{{\partial p}}{{\partial n}}(\xi )\left| {_{t = 0} } \right. \leqslant - 2c_0 < 0$ being restricted to the initial surface.展开更多
The present paper deals with the oblique derivative problem for general second order equations of mixed (elliptic-hyperbolic) type with the nonsmooth parabolic degenerate line $$K_1 (y)u_{xx} + \left| {K_2 (x)} \right...The present paper deals with the oblique derivative problem for general second order equations of mixed (elliptic-hyperbolic) type with the nonsmooth parabolic degenerate line $$K_1 (y)u_{xx} + \left| {K_2 (x)} \right|u_{yy} + a(x,y)u_x + b(x,y)u_y + c(x,y)u = - d(x,y)$$ in any plane domain D with the boundary ?D=Γ ∪ L 1 ∪ L 2 ∪ L 3 ∪ L 4, where Γ(? {y > 0}) ∈ C μ 2 (0 < μ < 1) is a curve with the end points z = ?1, 1. L 1, L 2, L 3, L 4 are four characteristics with the slopes ?H 2(x)/H 1(y), H 2(x)/H 1(y),?H 2(x)/H 1(y),H 2(x)/H 1(y) (H 1(y) = √|K 1(y)|, H 2(x) = √|K 2(x)| in {y < 0}) passing through the points z = x + iy = ?1, 0, 0, 1 respectively. And the boundary condition possesses the form $$\frac{1}{2}\frac{{\partial u}}{{\partial \nu }} = \frac{1}{{H(x,y)}}\operatorname{Re} \left[ {\overline {\lambda (z)} u_{\tilde z} } \right] = r(z), z \in \Gamma \cup L_1 \cup L_4 , \operatorname{Im} \left[ {\overline {\lambda (z)} u_{\tilde z} } \right]\left| {_{z = z_l } } \right. = b_l ,l = 1,2, u( - 1) = b_0 ,u(1) = b_3 ,$$ in which z 1, z 2 are the intersection points of L 1, L 2, L 3, L 4 respectively. The above equations can be called the general Chaplygin-Rassias equations, which include the Chaplygin-Rassias equations $$K_1 (y)(M_2 (x)u_x )_x + M_1 (x)(K_2 (y)u_y )_y + r(x,y)u = f(x,y), in D$$ as their special case. The above boundary value problem includes the Tricomi problem of the Chaplygin equation: K(y)u xx+u yy = 0 with the boundary condition u(z) = ?(z) on Γ ∪ L 1 ∪ L 4 as a special case. Firstly some estimates and the existence of solutions of the corresponding boundary value problems for the degenerate elliptic and hyperbolic equations of second order are discussed. Secondly, the solvability of the Tricomi problem, the oblique derivative problem and Frankl problem for the general Chaplygin-Rassias equations are proved. The used method in this paper is different from those in other papers, because the new notations W(z) = W(x + iy) = $u_{\tilde z} $ = [H 1(y)u x ? iH 2(x)u y]/2 i展开更多
This work reports on the author's recent study about regularity and the singular set of a C 1 smooth surface with prescribed p (or H)-mean curvature in the 3-dimensional Heisenberg group.As a differential equation...This work reports on the author's recent study about regularity and the singular set of a C 1 smooth surface with prescribed p (or H)-mean curvature in the 3-dimensional Heisenberg group.As a differential equation,this is a degenerate hyperbolic and elliptic PDE of second order,arising from the study of CR geometry.Assuming only the p-mean curvature H ∈ C 0,it is shown that any characteristic curve is C 2 smooth and its (line) curvature equals-H.By introducing special coordinates and invoking the jump formulas along characteristic curves,it is proved that the Legendrian (horizontal) normal gains one more derivative.Therefore the seed curves are C 2 smooth.This work also obtains the uniqueness of characteristic and seed curves passing through a common point under some mild conditions,respectively.In an on-going project,it is shown that the p-area element is in fact C 2 smooth along any characteristic curve and satisfies a certain ordinary differential equation of second order.Moreover,this ODE is analyzed to study the singular set.展开更多
基金the National Natural Science Foundation of China(Grant Nos.10525101,10421101 and 10601002)the innovation grant from Chinese Academy of Sciences
文摘In this article, we first present an equivalent formulation of the free boundary problem to 3-D incompressible Euler equations, then we announce our local wellposedness result concerning the free boundary problem in Sobolev space provided that there is no self-intersection point on the initial surface and under the stability assumption that $\frac{{\partial p}}{{\partial n}}(\xi )\left| {_{t = 0} } \right. \leqslant - 2c_0 < 0$ being restricted to the initial surface.
基金This work was supported by the National Natural Science Foundation of China (Grant No. 10671207)
文摘The present paper deals with the oblique derivative problem for general second order equations of mixed (elliptic-hyperbolic) type with the nonsmooth parabolic degenerate line $$K_1 (y)u_{xx} + \left| {K_2 (x)} \right|u_{yy} + a(x,y)u_x + b(x,y)u_y + c(x,y)u = - d(x,y)$$ in any plane domain D with the boundary ?D=Γ ∪ L 1 ∪ L 2 ∪ L 3 ∪ L 4, where Γ(? {y > 0}) ∈ C μ 2 (0 < μ < 1) is a curve with the end points z = ?1, 1. L 1, L 2, L 3, L 4 are four characteristics with the slopes ?H 2(x)/H 1(y), H 2(x)/H 1(y),?H 2(x)/H 1(y),H 2(x)/H 1(y) (H 1(y) = √|K 1(y)|, H 2(x) = √|K 2(x)| in {y < 0}) passing through the points z = x + iy = ?1, 0, 0, 1 respectively. And the boundary condition possesses the form $$\frac{1}{2}\frac{{\partial u}}{{\partial \nu }} = \frac{1}{{H(x,y)}}\operatorname{Re} \left[ {\overline {\lambda (z)} u_{\tilde z} } \right] = r(z), z \in \Gamma \cup L_1 \cup L_4 , \operatorname{Im} \left[ {\overline {\lambda (z)} u_{\tilde z} } \right]\left| {_{z = z_l } } \right. = b_l ,l = 1,2, u( - 1) = b_0 ,u(1) = b_3 ,$$ in which z 1, z 2 are the intersection points of L 1, L 2, L 3, L 4 respectively. The above equations can be called the general Chaplygin-Rassias equations, which include the Chaplygin-Rassias equations $$K_1 (y)(M_2 (x)u_x )_x + M_1 (x)(K_2 (y)u_y )_y + r(x,y)u = f(x,y), in D$$ as their special case. The above boundary value problem includes the Tricomi problem of the Chaplygin equation: K(y)u xx+u yy = 0 with the boundary condition u(z) = ?(z) on Γ ∪ L 1 ∪ L 4 as a special case. Firstly some estimates and the existence of solutions of the corresponding boundary value problems for the degenerate elliptic and hyperbolic equations of second order are discussed. Secondly, the solvability of the Tricomi problem, the oblique derivative problem and Frankl problem for the general Chaplygin-Rassias equations are proved. The used method in this paper is different from those in other papers, because the new notations W(z) = W(x + iy) = $u_{\tilde z} $ = [H 1(y)u x ? iH 2(x)u y]/2 i
基金supported by the "Science Council" of Taiwan 11529,China (Grant No. 97-2115-M-001-016-MY3)
文摘This work reports on the author's recent study about regularity and the singular set of a C 1 smooth surface with prescribed p (or H)-mean curvature in the 3-dimensional Heisenberg group.As a differential equation,this is a degenerate hyperbolic and elliptic PDE of second order,arising from the study of CR geometry.Assuming only the p-mean curvature H ∈ C 0,it is shown that any characteristic curve is C 2 smooth and its (line) curvature equals-H.By introducing special coordinates and invoking the jump formulas along characteristic curves,it is proved that the Legendrian (horizontal) normal gains one more derivative.Therefore the seed curves are C 2 smooth.This work also obtains the uniqueness of characteristic and seed curves passing through a common point under some mild conditions,respectively.In an on-going project,it is shown that the p-area element is in fact C 2 smooth along any characteristic curve and satisfies a certain ordinary differential equation of second order.Moreover,this ODE is analyzed to study the singular set.