To investigate the effects of Al-Ti-B-RE grain refiner on microstructure and mechanical properties of Al-7.0Si-0.55Mg (A357) alloy, some novel Al-7.0Si-0.55Mg alloys added with different amount of Al-STi-1B-RE grain...To investigate the effects of Al-Ti-B-RE grain refiner on microstructure and mechanical properties of Al-7.0Si-0.55Mg (A357) alloy, some novel Al-7.0Si-0.55Mg alloys added with different amount of Al-STi-1B-RE grain refiner with different RE composition were prepared by vacuum-melting. The microstructure and fracture behavior of the AI-7.0Si-0.55Mg alloys with the grain refiners were observed by X-ray diffraction (XRD), optical microscopy (OM), scanning electron microscopy (SEM), and the mechanical properties of the alloys were tested in mechanical testing machine at room temperature. The observation of AI-Ti-B-RE morphology and internal structure of the particles reveals that it exhibits a TiAl3/Ti2Al20RE core-shell structure via heterogeneous TiB2 nuclei. The tensile strength of Al-7.0Si-0.55Mg alloys with Al-5Ti-1B-3.0RE grain refiner reaches the peak value at the same addition (0.2%) of grain refiner.展开更多
A new method for producing semisolid slurry, annular electromagnetic stirring (AEMS), to refine and spheroidize grains was exploited. Experimental work was undertaken to investigate the effects of cooling rate, stir...A new method for producing semisolid slurry, annular electromagnetic stirring (AEMS), to refine and spheroidize grains was exploited. Experimental work was undertaken to investigate the effects of cooling rate, stirring power and stirring time on the solidification behavior of A357 alloy using A-EMS. It was found that increasing the cooling rate and stirring power gave rise to substantial grain refinement, which could be attributed to the increase of effective nucleation rate caused by the extremely uniform temperature and composition fields in the bulk liquid during the initial stage of solidification. Results showed that a fully grain refined spherical structure could be obtained using proper processing conditions within 10 s.展开更多
The workpieces of A357 alloy were routinely heat treated to the T6 state in order to gain an adequate mechanical property.The mechanical properties of these workpieces depend mainly on solid-solution temperature,solid...The workpieces of A357 alloy were routinely heat treated to the T6 state in order to gain an adequate mechanical property.The mechanical properties of these workpieces depend mainly on solid-solution temperature,solid-solution time,artificial aging temperature and artificial aging time.An artificial neural network(ANN) model with a back-propagation(BP) algorithm was used to predict mechanical properties of A357 alloy,and the effects of heat treatment processes on mechanical behavior of this alloy were studied.The results show that this BP model is able to predict the mechanical properties with a high accuracy.This model was used to reflect the influence of heat treatments on the mechanical properties of A357 alloy.Isograms of ultimate tensile strength and elongation were drawn in the same picture,which are very helpful to understand the relationship among aging parameters,ultimate tensile strength and elongation.展开更多
In order to improve the mould filling ability, the method for production of thin-walled castings in the travelingmagnetic field was applied. The relationship between magnetic field density and input voltage as well as...In order to improve the mould filling ability, the method for production of thin-walled castings in the travelingmagnetic field was applied. The relationship between magnetic field density and input voltage as well as distancewas investigated, and the mould filling length of A357 melt has been studied. The electromagnetic forces appliedon the melt were also analyzed. The result shows that the mould-filling length of the melt increase rapidly with theincrease of magnetic flux density. The mould filling lengths in gypsum upper mould and magnetic material uppermould were compared from the standpoint of application. It demonstrated that the steel upper mould is superior togypsum mould.展开更多
The influence of filling parameters including pouring temperature, filling speed, boost pressure and synchronous pressure on the fatigue of A357 alloy produced by counter pressure plaster casting was studied. The Tagu...The influence of filling parameters including pouring temperature, filling speed, boost pressure and synchronous pressure on the fatigue of A357 alloy produced by counter pressure plaster casting was studied. The Taguchi method was used to investigate the relationship between the fatigue performance and filling parameters. The results show that filling speed is the most significant factor among the four parameters. Synchronous pressures is less influential on the fatigue life when the value of synchronous pressure is from 400 kPa to 600 kPa.展开更多
Based on the computational fluid dynamics (CFD) method, a quenching tank with two agitator systems and two flow-equilibrating devices was selected to simulate flow distribution using Fluent software. A numerical exa...Based on the computational fluid dynamics (CFD) method, a quenching tank with two agitator systems and two flow-equilibrating devices was selected to simulate flow distribution using Fluent software. A numerical example was used to testify the validity of the quenching tank model. In order to take tank parameters (agitation speed, position of directional flow baffle and coordinate position in quench zone) into account, an approach that combines the artificial neural network (ANN) with CFD method was developed to study the flow distribution in the quenching tank. The flow rate of the quenching medium shows a very good agreement between the ANN predicted results and the Fluent simulated data. Methods for the optimal design of the quenching tank can be used as technical support for industrial production.展开更多
The inhomogeneity of density and mechanical properties of A357 aluminum alloy in the semi-solid state were investigated.Numerical simulation and backward extrusion were adopted to study the preparation of cup shells.T...The inhomogeneity of density and mechanical properties of A357 aluminum alloy in the semi-solid state were investigated.Numerical simulation and backward extrusion were adopted to study the preparation of cup shells.The results show that the relative density of the wall is the lowest in samples,and that of the base is the highest.With increasing the billet height,more time is needed for relative density of the corner to reach the maximum value,and the relative densities in every region improve evidently with increasing the pressure.The tensile stress was simulated to be the largest at the corner,and the hot tearings were forecasted to mainly appear at the corner too.By employing proper billet height and pressure,the extruded samples consisted of fine and uniform microstructures,and can obtain excellent mechanical properties and Brinell hardness.展开更多
The effect of counter-pressure casting parameters on secondary dendrite arm spacing (SDAS) of A357 alloy under different process parameters was studied. Quartz sand mould with chill can strongly decrease the SDAS. R...The effect of counter-pressure casting parameters on secondary dendrite arm spacing (SDAS) of A357 alloy under different process parameters was studied. Quartz sand mould with chill can strongly decrease the SDAS. Reduced SDAS close to the mould bottom because of chilling was obtained. Pressure seems to have no apparent effect on the SDAS. In order to obtain casts with UTS ≥320 MPa, SDAS must be less than 55 μm, which means a local cooling rate VL≥0.23 ℃ /s.展开更多
A357 alloy was modified with lanthanum -rich mischmetal, and modification effects of the mischmetal on its as-cast and heat-treated structures, mechanical properties and hydrogen content were investigated and compared...A357 alloy was modified with lanthanum -rich mischmetal, and modification effects of the mischmetal on its as-cast and heat-treated structures, mechanical properties and hydrogen content were investigated and compared with that of strontium metal. It is shown that the modification effect of La-rich mischmetal is better than that of strontium in the aspects of refining eutectic silicon, ejecting hydrogen from the melt and improving comprehensive mechanical properties of the alloy. Therefore Al-Si-Mg alloy with high strength and improved toughness can be obtained by modification with La-rich mischmetal.展开更多
Electromagnetic stir casting process of A357-Si C nanocomposite was discussed using the D-optimal design of experiment(DODOE) method. As the main objective, nine random experiments obtained by DX-7 software were perfo...Electromagnetic stir casting process of A357-Si C nanocomposite was discussed using the D-optimal design of experiment(DODOE) method. As the main objective, nine random experiments obtained by DX-7 software were performed. By this method, A357-Si C nanocomposites with 0.5, 1.0 and 1.5 wt.% Si C were fabricated at three different frequencies(10, 35 and 60 Hz) in the experimental stage. The microstructural evolution was characterized by scanning electron and optical microscopes, and the mechanical properties were investigated using hardness and roomtemperature uniaxial tensile tests. The results showed that the homogeneous distribution of Si C nanoparticles leads to the microstructure evolution from dendritic to non-dendritic form and a reduction of size by 73.9%. Additionally, based on DODOE, F-values of 44.80 and 179.64 were achieved for yield stress(YS) and ultimate tensile strength(UTS), respectively, implying that the model is significant and the variables(Si C fraction and stirring frequency) were appropriately selected. The optimum values of the Si C fraction and stirring frequency were found to be 1.5 wt.% and 60 Hz, respectively. In this case, YS and UTS for A357-Si C nanocomposites were obtained to be 120 and 188 MPa(57.7% and 57.9 % increase compared with those of the as-cast sample), respectively.展开更多
The microstructure and mechanical properties of A357 alloy under differential pressure casting process with different casting mould materials were studied. The results show that by using SiO2 resin sand the grain size...The microstructure and mechanical properties of A357 alloy under differential pressure casting process with different casting mould materials were studied. The results show that by using SiO2 resin sand the grain size is biggest and the tensile and elongation are the lowest, while the grain size is the smallest and the tensile strength and elongation are the highest when the chill is used, and the grain size, tensile strength and elongation of A357 alloy with SiC resin sand mould are in the middle. Furthermore, the results also demonstrate that for thin wall castings during differential pressure casting processes the grain size, tensile strength and elongation are different at different positions corresponding to the same casting mould material, while at the position of gating the grain size is the smallest and the tensile strength and elongation have the highest values. At the position of edge the grain size, the tensile strength and elongation take the second place. However, in the middle of the thin wall castings the grain size is coarsest and the tensile strength and elongation are the lowest.展开更多
Iron is the most deleterious impurity in the Al-Si-Mg casting alloys and can easily form inter-metallic compounds that can significantly affect the subsequent behavior of material properties.Using differential scannin...Iron is the most deleterious impurity in the Al-Si-Mg casting alloys and can easily form inter-metallic compounds that can significantly affect the subsequent behavior of material properties.Using differential scanning calorimetry (DSC) and microstructural analysis, how the Be and Fe additions affect the iron-bearing phase in A357 alloys was investigated.The results show that the iron-bearing phase in A357 alloy comprises mainly the plate-like β-Al5FeSi and a small quantity of the script-type π-Al8FeMg3Si6; and that the plate-like β-Al5FeSi proportion increases with increasing iron content in the alloy.The iron-bearing phase is mostly transformed from the plate-like β-Al5FeSi to the script-type π-Al8FeMg3Si6 with the addition of Be in the alloy.The hardness of alloy samples was also tested.The results show that both the increasing iron content and Be content can increase the hardness of the alloy.This may be contributed to the change of morphology and distribution of the iron-bearing phase in A357 alloy with the addition of iron or Be to the alloy.展开更多
The effect of stirring frequency on the semi-solid A357 aluminum alloy microstructure was investigated by annulus electromagnetic stirring(AEMS) method. The microstructures obtained by AEMS method and ordinary electro...The effect of stirring frequency on the semi-solid A357 aluminum alloy microstructure was investigated by annulus electromagnetic stirring(AEMS) method. The microstructures obtained by AEMS method and ordinary electromagnetic stirring(EMS)method were compared and analyzed. The results show that the primary α(Al) particles become more spherical and fine, and disperse uniformly in a liquid matrix with increasing stirring frequency, and higher stirring frequency is advantageous to obtain the fine spherical semi-solid microstructure by AEMS. Compared with the microstructures obtained at stirring frequency of 50 Hz in EMS, the fine spherical and uniformly distributed semi-solid microstructures can be still obtained at stirring frequency of 50 Hz in AEMS, so stirring frequency of 50 Hz is recommended in AEMS to save investment cost on frequency-conversion facilities.展开更多
The flow distribution in quench tank for heat treatment of A357 alloy large complicated components was simulated using FLUENT computational fluid dynamics(CFD) software.The flow velocity and the uniformity of flow f...The flow distribution in quench tank for heat treatment of A357 alloy large complicated components was simulated using FLUENT computational fluid dynamics(CFD) software.The flow velocity and the uniformity of flow field in two types of quench tanks(with or without agitation system) were calculated.The results show that the flow field in the quench tank without agitation system has not evident regularity.While as for the quench tank with agitation system,the flow fields in different parameters have certain regularity.The agitation tanks have a distinct advantage over the system without agitation.Proper process parameters were also obtained.Finally,the tank model established in this work was testified by an example from publication.This model with high accuracy is able to optimize the tank structures and can be helpful for industrial production and theoretical investigation in the fields of heat treatment of large complicated components.展开更多
基金Project(2012CB619503)supported by the Natioanl Basic Research Program of ChinaProject(2013AA031001)supported by the National High-tech Research and Development Program of ChinaProject(2012DFA50630)supported by the International Science&Technology Cooperation Program of China
文摘To investigate the effects of Al-Ti-B-RE grain refiner on microstructure and mechanical properties of Al-7.0Si-0.55Mg (A357) alloy, some novel Al-7.0Si-0.55Mg alloys added with different amount of Al-STi-1B-RE grain refiner with different RE composition were prepared by vacuum-melting. The microstructure and fracture behavior of the AI-7.0Si-0.55Mg alloys with the grain refiners were observed by X-ray diffraction (XRD), optical microscopy (OM), scanning electron microscopy (SEM), and the mechanical properties of the alloys were tested in mechanical testing machine at room temperature. The observation of AI-Ti-B-RE morphology and internal structure of the particles reveals that it exhibits a TiAl3/Ti2Al20RE core-shell structure via heterogeneous TiB2 nuclei. The tensile strength of Al-7.0Si-0.55Mg alloys with Al-5Ti-1B-3.0RE grain refiner reaches the peak value at the same addition (0.2%) of grain refiner.
基金supported by National High Technical Research and Development Program of China (No.2009AA03Z534)National Basic Research Program of China (No.2006CB605203)
文摘A new method for producing semisolid slurry, annular electromagnetic stirring (AEMS), to refine and spheroidize grains was exploited. Experimental work was undertaken to investigate the effects of cooling rate, stirring power and stirring time on the solidification behavior of A357 alloy using A-EMS. It was found that increasing the cooling rate and stirring power gave rise to substantial grain refinement, which could be attributed to the increase of effective nucleation rate caused by the extremely uniform temperature and composition fields in the bulk liquid during the initial stage of solidification. Results showed that a fully grain refined spherical structure could be obtained using proper processing conditions within 10 s.
文摘The workpieces of A357 alloy were routinely heat treated to the T6 state in order to gain an adequate mechanical property.The mechanical properties of these workpieces depend mainly on solid-solution temperature,solid-solution time,artificial aging temperature and artificial aging time.An artificial neural network(ANN) model with a back-propagation(BP) algorithm was used to predict mechanical properties of A357 alloy,and the effects of heat treatment processes on mechanical behavior of this alloy were studied.The results show that this BP model is able to predict the mechanical properties with a high accuracy.This model was used to reflect the influence of heat treatments on the mechanical properties of A357 alloy.Isograms of ultimate tensile strength and elongation were drawn in the same picture,which are very helpful to understand the relationship among aging parameters,ultimate tensile strength and elongation.
基金The author gratefully appreciate key project (59995440) of the National Natural Science Foundation of China and 973 Project (G2000067202-2) for the financial support.
文摘In order to improve the mould filling ability, the method for production of thin-walled castings in the travelingmagnetic field was applied. The relationship between magnetic field density and input voltage as well as distancewas investigated, and the mould filling length of A357 melt has been studied. The electromagnetic forces appliedon the melt were also analyzed. The result shows that the mould-filling length of the melt increase rapidly with theincrease of magnetic flux density. The mould filling lengths in gypsum upper mould and magnetic material uppermould were compared from the standpoint of application. It demonstrated that the steel upper mould is superior togypsum mould.
文摘The influence of filling parameters including pouring temperature, filling speed, boost pressure and synchronous pressure on the fatigue of A357 alloy produced by counter pressure plaster casting was studied. The Taguchi method was used to investigate the relationship between the fatigue performance and filling parameters. The results show that filling speed is the most significant factor among the four parameters. Synchronous pressures is less influential on the fatigue life when the value of synchronous pressure is from 400 kPa to 600 kPa.
文摘Based on the computational fluid dynamics (CFD) method, a quenching tank with two agitator systems and two flow-equilibrating devices was selected to simulate flow distribution using Fluent software. A numerical example was used to testify the validity of the quenching tank model. In order to take tank parameters (agitation speed, position of directional flow baffle and coordinate position in quench zone) into account, an approach that combines the artificial neural network (ANN) with CFD method was developed to study the flow distribution in the quenching tank. The flow rate of the quenching medium shows a very good agreement between the ANN predicted results and the Fluent simulated data. Methods for the optimal design of the quenching tank can be used as technical support for industrial production.
基金Projects(50774026,50875059)supported by the National Natural Science Foundation of ChinaProject(20070420023)supported by the China Postdoctoral Science FoundationProject(2008AA03A239)supported by the High-tech Research and Development Program of China
文摘The inhomogeneity of density and mechanical properties of A357 aluminum alloy in the semi-solid state were investigated.Numerical simulation and backward extrusion were adopted to study the preparation of cup shells.The results show that the relative density of the wall is the lowest in samples,and that of the base is the highest.With increasing the billet height,more time is needed for relative density of the corner to reach the maximum value,and the relative densities in every region improve evidently with increasing the pressure.The tensile stress was simulated to be the largest at the corner,and the hot tearings were forecasted to mainly appear at the corner too.By employing proper billet height and pressure,the extruded samples consisted of fine and uniform microstructures,and can obtain excellent mechanical properties and Brinell hardness.
基金Funded by the Innovation Fund for Outstanding Scholar of Henan Prov-ince(No. 0621000700)
文摘The effect of counter-pressure casting parameters on secondary dendrite arm spacing (SDAS) of A357 alloy under different process parameters was studied. Quartz sand mould with chill can strongly decrease the SDAS. Reduced SDAS close to the mould bottom because of chilling was obtained. Pressure seems to have no apparent effect on the SDAS. In order to obtain casts with UTS ≥320 MPa, SDAS must be less than 55 μm, which means a local cooling rate VL≥0.23 ℃ /s.
文摘A357 alloy was modified with lanthanum -rich mischmetal, and modification effects of the mischmetal on its as-cast and heat-treated structures, mechanical properties and hydrogen content were investigated and compared with that of strontium metal. It is shown that the modification effect of La-rich mischmetal is better than that of strontium in the aspects of refining eutectic silicon, ejecting hydrogen from the melt and improving comprehensive mechanical properties of the alloy. Therefore Al-Si-Mg alloy with high strength and improved toughness can be obtained by modification with La-rich mischmetal.
文摘Electromagnetic stir casting process of A357-Si C nanocomposite was discussed using the D-optimal design of experiment(DODOE) method. As the main objective, nine random experiments obtained by DX-7 software were performed. By this method, A357-Si C nanocomposites with 0.5, 1.0 and 1.5 wt.% Si C were fabricated at three different frequencies(10, 35 and 60 Hz) in the experimental stage. The microstructural evolution was characterized by scanning electron and optical microscopes, and the mechanical properties were investigated using hardness and roomtemperature uniaxial tensile tests. The results showed that the homogeneous distribution of Si C nanoparticles leads to the microstructure evolution from dendritic to non-dendritic form and a reduction of size by 73.9%. Additionally, based on DODOE, F-values of 44.80 and 179.64 were achieved for yield stress(YS) and ultimate tensile strength(UTS), respectively, implying that the model is significant and the variables(Si C fraction and stirring frequency) were appropriately selected. The optimum values of the Si C fraction and stirring frequency were found to be 1.5 wt.% and 60 Hz, respectively. In this case, YS and UTS for A357-Si C nanocomposites were obtained to be 120 and 188 MPa(57.7% and 57.9 % increase compared with those of the as-cast sample), respectively.
文摘The microstructure and mechanical properties of A357 alloy under differential pressure casting process with different casting mould materials were studied. The results show that by using SiO2 resin sand the grain size is biggest and the tensile and elongation are the lowest, while the grain size is the smallest and the tensile strength and elongation are the highest when the chill is used, and the grain size, tensile strength and elongation of A357 alloy with SiC resin sand mould are in the middle. Furthermore, the results also demonstrate that for thin wall castings during differential pressure casting processes the grain size, tensile strength and elongation are different at different positions corresponding to the same casting mould material, while at the position of gating the grain size is the smallest and the tensile strength and elongation have the highest values. At the position of edge the grain size, the tensile strength and elongation take the second place. However, in the middle of the thin wall castings the grain size is coarsest and the tensile strength and elongation are the lowest.
基金supported by the Natural Science Foundation of Shaanxi Province (No.SJ08-ZT05)
文摘Iron is the most deleterious impurity in the Al-Si-Mg casting alloys and can easily form inter-metallic compounds that can significantly affect the subsequent behavior of material properties.Using differential scanning calorimetry (DSC) and microstructural analysis, how the Be and Fe additions affect the iron-bearing phase in A357 alloys was investigated.The results show that the iron-bearing phase in A357 alloy comprises mainly the plate-like β-Al5FeSi and a small quantity of the script-type π-Al8FeMg3Si6; and that the plate-like β-Al5FeSi proportion increases with increasing iron content in the alloy.The iron-bearing phase is mostly transformed from the plate-like β-Al5FeSi to the script-type π-Al8FeMg3Si6 with the addition of Be in the alloy.The hardness of alloy samples was also tested.The results show that both the increasing iron content and Be content can increase the hardness of the alloy.This may be contributed to the change of morphology and distribution of the iron-bearing phase in A357 alloy with the addition of iron or Be to the alloy.
基金Projects(2006AA03Z115 2009AA03Z534 )supported by the National Hi-tech Research and Development Program of ChinaProject(2006CB605203) supported by the National Basic Research Program of China
文摘The effect of stirring frequency on the semi-solid A357 aluminum alloy microstructure was investigated by annulus electromagnetic stirring(AEMS) method. The microstructures obtained by AEMS method and ordinary electromagnetic stirring(EMS)method were compared and analyzed. The results show that the primary α(Al) particles become more spherical and fine, and disperse uniformly in a liquid matrix with increasing stirring frequency, and higher stirring frequency is advantageous to obtain the fine spherical semi-solid microstructure by AEMS. Compared with the microstructures obtained at stirring frequency of 50 Hz in EMS, the fine spherical and uniformly distributed semi-solid microstructures can be still obtained at stirring frequency of 50 Hz in AEMS, so stirring frequency of 50 Hz is recommended in AEMS to save investment cost on frequency-conversion facilities.
基金Project(51405389)supported by the National Natural Science Foundation of ChinaProject(2014003)supported by the Shanghai Key Laboratory of Digital Manufacture for Thin-walled Structures,China+1 种基金Project(3102015ZY024)supported by the Fundamental Research Funds for the Central Universities,ChinaProject(108-QP-2014)supported by the Research Fund of the State Key Laboratory of Solidification Processing,Northwestern Polytechnical University,China
文摘The flow distribution in quench tank for heat treatment of A357 alloy large complicated components was simulated using FLUENT computational fluid dynamics(CFD) software.The flow velocity and the uniformity of flow field in two types of quench tanks(with or without agitation system) were calculated.The results show that the flow field in the quench tank without agitation system has not evident regularity.While as for the quench tank with agitation system,the flow fields in different parameters have certain regularity.The agitation tanks have a distinct advantage over the system without agitation.Proper process parameters were also obtained.Finally,the tank model established in this work was testified by an example from publication.This model with high accuracy is able to optimize the tank structures and can be helpful for industrial production and theoretical investigation in the fields of heat treatment of large complicated components.