利用销盘高速干滑动摩擦磨损试验机,对30Cr Mn Si Ni2A低合金超高强度钢的摩擦磨损性能进行了研究,应用JSM-6390A型扫描电子显微镜和X-衍射方法对摩擦磨损表面进行观察,表征其摩擦表面的微观形貌、摩擦磨损产生的磨屑以及由于摩擦产热...利用销盘高速干滑动摩擦磨损试验机,对30Cr Mn Si Ni2A低合金超高强度钢的摩擦磨损性能进行了研究,应用JSM-6390A型扫描电子显微镜和X-衍射方法对摩擦磨损表面进行观察,表征其摩擦表面的微观形貌、摩擦磨损产生的磨屑以及由于摩擦产热而引起的氧化物,进而推断出磨损机制.结果表明:摩擦系数随速度和载荷的增大而减少,其速度是影响摩擦系数的主要因素;在摩擦初期当摩擦系数快速下降时,摩擦表面温度急剧增加,当达到一定数值后二者都形成一个动态的平衡;随着速度和载荷增大,磨损机理主要由氧化磨损转变为剥落、塑性变形、犁沟以及黏着磨损,且磨损表层的氧化物由Fe O转变为Fe_3O_4和Fe_2O_3,当出现Fe_2O_3氧化物时,磨损率急剧升高.展开更多
During high speed machining in the field of manufacture,chip formation is a severe plastic deformation process including large strain,high strain rate and high temperature.And the strain rate in high speed cutting pro...During high speed machining in the field of manufacture,chip formation is a severe plastic deformation process including large strain,high strain rate and high temperature.And the strain rate in high speed cutting process can be achieved to 105 s^(-1).30CrMnSiNi2Asteel is a kind of important high-strength low-alloy structural steel with wide application range.Obtaining the dynamic mechanical properties of30CrMnSiNi2Aunder the conditions of high strain rate and high temperature is necessary to construct the constitutive relation model for high speed machining.The dynamic compressive mechanical properties of30CrMnSiNi2Asteel were studied using split Hopkinson pressure bar(SHPB)tests at 30-700°C and3000-10000s^(-1).The stress-strain curves of 30CrMnSiNi2Asteel at different temperatures and strain rates were investigated,and the strain hardening effect and temperature effect were discussed.Experimental results show that 30CrMnSiNi2Ahas obvious temperature sensitivity at 300°C.Moreover,the flow stress decreased significantly with the increase of temperature.The strain hardening effect of the material at high strain rate is not significant with the increase of strain.The strain rate hardening effect is obvious with increasing the temperature.According to the experimental results,the established Johnson-Cook(J-C)constitutive model of 30CrMnSiNi2Asteel could be used at high strain rate and high temperature.展开更多
Two post weld heat treatments (PWHT), 900 ℃ oil quenched and low temperature tempered (PWHTA) and high temperature tempered and then 900 ℃ oil quenched and low temperature tempered (PWHTB), are employed to t...Two post weld heat treatments (PWHT), 900 ℃ oil quenched and low temperature tempered (PWHTA) and high temperature tempered and then 900 ℃ oil quenched and low temperature tempered (PWHTB), are employed to treat the weldment. Then the effect of two post weld heat treatment processes on the microstructure,mechanical properties and fracture toughness of electron beam welded joints of 30CrMnSiNi2A steel have been discussed. The results show that, after two kinds of PWHT the microstructure and hardness at every zones of EBW joints are nearly same. Although the welds have good mechanical properties, fracture toughness of both weld and heat affected zone (HAZ) is low, the CTOD values of welds are comparatively higher than that of HAZ. Microstructure and fracture toughness of two EBW joints have no evident differences.展开更多
The corrosion behaviors of ultra-high strength steel 30CrMnSiNi2A in sodium chloride solution were studied by weight loss and electrochemical methods. The morphology of corrosion products was observed using scanning e...The corrosion behaviors of ultra-high strength steel 30CrMnSiNi2A in sodium chloride solution were studied by weight loss and electrochemical methods. The morphology of corrosion products was observed using scanning electron microscopy(SEM) and the composition was analyzed using an energy dispersive spectroscopy(EDS) and X-Ray diffraction (XRD). The experimental results showed that the corrosion came from pitting corrosion and the rust layer was composed of outer rust layer γ-FeOOH and inner rust layer Fe_2O_3 with a little β-FeOOH. The correlation between corrosion rate and test time accorded with exponential rule. The corrosion current measured by polarization methods was higher than that calculated by weight loss method after a long-time immersion, the main reason was that,β-FeOOH and γ-Fe_2O_3 transformed by γ-FeOOH led to overestimating corrosion rate. The processes of corrosion prophase were obtained from XRD and EIS results. The corrosion product, Fe(OH)_2 formed at the initial stage stayed at a non-steady state and then consequently transferred to γ-FeOOH, γ-Fe_2O_3 or β-FeOOH.展开更多
文摘利用销盘高速干滑动摩擦磨损试验机,对30Cr Mn Si Ni2A低合金超高强度钢的摩擦磨损性能进行了研究,应用JSM-6390A型扫描电子显微镜和X-衍射方法对摩擦磨损表面进行观察,表征其摩擦表面的微观形貌、摩擦磨损产生的磨屑以及由于摩擦产热而引起的氧化物,进而推断出磨损机制.结果表明:摩擦系数随速度和载荷的增大而减少,其速度是影响摩擦系数的主要因素;在摩擦初期当摩擦系数快速下降时,摩擦表面温度急剧增加,当达到一定数值后二者都形成一个动态的平衡;随着速度和载荷增大,磨损机理主要由氧化磨损转变为剥落、塑性变形、犁沟以及黏着磨损,且磨损表层的氧化物由Fe O转变为Fe_3O_4和Fe_2O_3,当出现Fe_2O_3氧化物时,磨损率急剧升高.
基金supported by the National High Technology Research and Development Program of China(2014AA041504)the National Natural Science Foundation of China(51605161)
文摘During high speed machining in the field of manufacture,chip formation is a severe plastic deformation process including large strain,high strain rate and high temperature.And the strain rate in high speed cutting process can be achieved to 105 s^(-1).30CrMnSiNi2Asteel is a kind of important high-strength low-alloy structural steel with wide application range.Obtaining the dynamic mechanical properties of30CrMnSiNi2Aunder the conditions of high strain rate and high temperature is necessary to construct the constitutive relation model for high speed machining.The dynamic compressive mechanical properties of30CrMnSiNi2Asteel were studied using split Hopkinson pressure bar(SHPB)tests at 30-700°C and3000-10000s^(-1).The stress-strain curves of 30CrMnSiNi2Asteel at different temperatures and strain rates were investigated,and the strain hardening effect and temperature effect were discussed.Experimental results show that 30CrMnSiNi2Ahas obvious temperature sensitivity at 300°C.Moreover,the flow stress decreased significantly with the increase of temperature.The strain hardening effect of the material at high strain rate is not significant with the increase of strain.The strain rate hardening effect is obvious with increasing the temperature.According to the experimental results,the established Johnson-Cook(J-C)constitutive model of 30CrMnSiNi2Asteel could be used at high strain rate and high temperature.
文摘Two post weld heat treatments (PWHT), 900 ℃ oil quenched and low temperature tempered (PWHTA) and high temperature tempered and then 900 ℃ oil quenched and low temperature tempered (PWHTB), are employed to treat the weldment. Then the effect of two post weld heat treatment processes on the microstructure,mechanical properties and fracture toughness of electron beam welded joints of 30CrMnSiNi2A steel have been discussed. The results show that, after two kinds of PWHT the microstructure and hardness at every zones of EBW joints are nearly same. Although the welds have good mechanical properties, fracture toughness of both weld and heat affected zone (HAZ) is low, the CTOD values of welds are comparatively higher than that of HAZ. Microstructure and fracture toughness of two EBW joints have no evident differences.
基金Funded by the National Natural Science Foundation of China(No.51171011)
文摘The corrosion behaviors of ultra-high strength steel 30CrMnSiNi2A in sodium chloride solution were studied by weight loss and electrochemical methods. The morphology of corrosion products was observed using scanning electron microscopy(SEM) and the composition was analyzed using an energy dispersive spectroscopy(EDS) and X-Ray diffraction (XRD). The experimental results showed that the corrosion came from pitting corrosion and the rust layer was composed of outer rust layer γ-FeOOH and inner rust layer Fe_2O_3 with a little β-FeOOH. The correlation between corrosion rate and test time accorded with exponential rule. The corrosion current measured by polarization methods was higher than that calculated by weight loss method after a long-time immersion, the main reason was that,β-FeOOH and γ-Fe_2O_3 transformed by γ-FeOOH led to overestimating corrosion rate. The processes of corrosion prophase were obtained from XRD and EIS results. The corrosion product, Fe(OH)_2 formed at the initial stage stayed at a non-steady state and then consequently transferred to γ-FeOOH, γ-Fe_2O_3 or β-FeOOH.